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ABSTRACT 

This thesis explores the physical and mathematical limitations of two common attitude 

control systems: one based on reaction wheels and another based on control moment 

gyroscopes (CMGs). The dynamics are derived from first principles and control 

algorithms for achieving maximum reaction wheel potential are discussed. The shaped 

eigenaxis input is utilized to establish baseline maneuver performance. A time-optimal 

shaped input is introduced and implemented in a feedback setting, subject to the 

limitations of the Moore-Penrose pseudo-inverse control allocation. Finally, a feed-

forward plus feedback controller is introduced to implement the time-optimal torque 

inputs directly to the reaction wheels. This obviates the need for the pseudo-inverse 

control allocation, and therefore exploits the total capacities of both the reaction wheel 

momentum envelope and torque envelope. These reaction wheel control approaches are 

compared with CMG performance to establish spacecraft size and slew parameters that 

make the use of reaction wheels a reasonable choice. 
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I. INTRODUCTION 

A. MOTIVATION 

Spacecraft in low earth orbit (LEO) traverse around the earth at very high rates. 

For instance, a spacecraft in a circular orbit at 200 nautical miles altitude travels at speeds 

in excess of 17,000 mph. This equates to approximately 4 degrees of the orbit traveled 

every minute, completing a full orbit in 90 minutes. From the point of view of an imaging 

satellite, the spacecraft may only be able to see a ground target for 3–4 minutes, but this 

amount of time requires the orbit to pass directly over the target. Because much 

resolution is lost when taking low angle photographs, only the 20 degrees off-nadir is 

conventionally used [1, Table I-1], [2]. The off-nadir constraint significantly reduces the 

amount of time the target is within the line of sight. Depending on how far left or right of 

the orbit track the target is, the satellite may only have seconds to obtain an image. The 

problem is further complicated when multiple targets lie along that small target zone. 

This space-based problem is even passed forward to the military ground 

commander. The battlefield owner requires timely battlespace situational awareness for 

his mission but may not have the state-sponsored weight in order to gain access to 

national assets within a timely manner. The Army’s new imaging satellite concept, 

Kestrel Eye, is a new approach to fill this void. The intent is to put many small, 

inexpensive satellites into orbit to obtain images and transmit them to the battlespace 

owner more quickly. These satellites must be agile to get multiple images per target zone 

and responsive to last-minute request changes. Therefore, conventional slew rate 

limitation of about 2° / sec  must be overcome [2]. The mechanisms that induce rotation 

(momentum exchange devices) must therefore be used to their highest potential. In this 

way, the spacecraft can move from target to target as quickly as possible to minimize 

otherwise unproductive slew time. This thesis explores techniques to maximize actuator 

performance and minimize slew time without any hardware changes.   
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B. BACKGROUND 

Control engineers typically employ two different types of electro-mechanical 

momentum exchange devices (MEDs) to perform spacecraft attitude control. The first is 

reaction wheels, which cause a reactionary body torque and momentum by counter-

rotating a small rotor. Reaction wheels are simple to control and have a high momentum 

capacity, which translates to high angular velocity rates for the spacecraft. The second 

MED is a control moment gyroscope (CMG), which houses a spinning wheel within an 

intermediate gimbal frame. The gimbal frame is allowed to rotate, changing the 

orientation of the wheel’s momentum vector. The gimbal torque input is in turn amplified 

(as the product of the gimbal rate and the magnitude of the momentum vector). The high 

torque output of CMGs is complicated by mechanical complexity of multiple rotating 

frames and the presence of zero-output singularities that must be avoided [3]. The 

elevated torque, and therefore higher acceleration of the spacecraft body, has led CMGs 

to become the de facto solution to generate agile spacecraft. Although reaction wheels are 

more prevalent [4] (Appendix B), cost less, are mechanically simpler, weigh less 

(Appendix B), and are easier to control, the torque output of CMGs simply cannot be 

matched by reaction wheels.   

A spacecraft slew is the reorientation from one orientation in three dimensional 

space to another. For a basic slew, the initial and final spacecraft orientations are given in 

terms of their quaternion reference points. To reconcile the difference, the most basic 

approach is to treat the difference in quaternion vectors as a single arc. The arc of 

minimum distance rotates about a single axis, known as the Euler axis [5, p. 155] or 

eigenaxis [6, pp. 329–338]. A basic approach of control therefore is to treat the three-

dimensional reorientation problem as a one-dimensional single angle slew along this arc, 

about the eigenaxis. The eigenaxis attitude control maneuver requires a single quaternion 

to be called for and error is regulated to zero as the spacecraft gets closer to the desired 

quaternion. This maneuver can be done as a step input, where the error is constantly 

corrected for by the controller [7]–[9]. The step input approach is simple to implement 

and stability is dependent upon only a few gains. Thus, the approach is popular in 
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spacecraft attitude control [10, pp. 212–267]  [5, pp. 152–194]  [6, pp. 403–452]  [11,  

pp. 351–430].   

One of the challenges of the step input approach is gain selection. The gains 

designed for large maneuvers may act slowly for small maneuvers, causing poor 

performance. Another approach is to use a shaped trajectory. Instead of passing a single 

final quaternion to the controller, a quaternion path for the maneuver is calculated and a 

set of discrete intermediate quaternions is passed as a target trajectory. Here, the gains are 

tuned to give acceptable performance and their values are agnostic to the slew size. 

Creamer et al. [12] developed a shaped bang-coast-bang maneuver about the eigenaxis, 

used on board the Clementine spacecraft. Time-optimal quaternion shaping was used on 

the TRACE spacecraft [13]. Additionally, [14] suggests shaping both trajectory and body 

rates and using these as inputs to the spacecraft attitude control (ACS) system.   

A typical ACS uses four or more wheels for redundancy. However, the use of four 

or more wheels presents a control allocation problem. This is caused when torque or 

momentum required in the body frame must be produced by the redundant set of MEDs. 

A common method of torque and momentum allocation is to use the Moore-Penrose 

pseudo-inverse, which provides a least squares (L2) solution [5, p. 169] [6, p. 440] [11,  

p. 416] [15]. According to this approach, the full magnitude of the requested body torque 

may not be available in every direction. The minimum norm solution is devised, 

providing a unique allocation of wheel torques [16, pp. 49–57]. The pseudo-inverse does 

not take physical wheel limitations into account and may request more torque than is 

available. Once any wheel is saturated, then the remaining allocated torque is simply lost. 

This is because to remain on eigenaxis, the integrity of the least squares solution must be 

maintained. Thereby, proportional saturation across all wheels is necessary. Because of 

the nature of the Moore Penrose pseudo-inverse, maximum momentum and torque will 

be unavailable about certain axes. The pseudo-inverse is described within [15] in great 

detail, providing detailed illustrations of the L2 solution in three-dimensional space given 

various reaction wheel array configurations. 

A way to bypass the L2 limitation is to operate the ACS in the open-loop 

(feedforward). One approach is to calculate the optimal torque solution and command the 
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wheels directly. This is far from conventional thinking, because the individual wheel 

torque solution is not generally available. The shape of the torque signal can be derived 

over the course of the maneuver. This feedforward concept has been around for decades 

[17]–[19], but the approach is susceptible to instability due to external disturbances and 

uncertainties of the spacecraft inertia or initial states [9]. For the solution to work 

properly, all states and parameters must be established exactly prior to reorientation, with 

no uncertainties throughout the maneuver. This ideal scenario is unlikely, so a merger of 

open-loop and closed-loop (feedback) must be used to improve stability and performance. 

Closed-loop implementation of open-loop maneuvers was flown on TRACE [20] with 

great success, but the performance gains were somewhat limited by the spacecraft 

preexisting software. Based on the literature available, it appears that industry may not be 

utilizing reaction wheels to their full potential, fostering a greater disparity between the 

capabilities of reaction wheels and CMGs.   

C. LIMITATIONS ON AGILITY 

In practice, a spacecraft slew rate is restricted for a variety of reasons. The most 

obvious limitations are due to the physical limitations of the MED array. For a reaction 

wheel system, an individual wheel is limited on how fast it can spin, thus the momentum 

it can produce. Positive rotation at maximum angular velocity results in a maximum 

momentum vector, while counter-rotating results in a momentum vector of equal 

magnitude and opposite direction. Given a skewed array of several reaction wheels, the 

vector sum of the maximum momentum vectors in any arbitrary direction creates the 

momentum envelope (Chapter IV). The shape of the reaction wheel momentum envelope 

is a polyhedron [15], involving sharp edges and vertices. This signifies that more 

momentum is available in certain directions than others. This momentum envelope 

produces the physical rate limit of the system about any given axis. 

Many attitude control systems involve restricting the axis of rotation to the 

eigenaxis, thereby minimizing the angle of rotation. Since the momentum space is not 

spherically uniform, some axes allow faster rotation rates. This causes additional 

problems with slew planning. Not only are two quaternions in space given, but there is 
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also an eigenaxis-specific slew rate. Not to mention the increase in eigenaxis-specific 

slew acceleration (derived from the torque envelope, Chapter IV) to be concerned about.   

When operators want an imaging satellite to obtain an image, the rate and 

acceleration variations over 4π steradians require them to focus on the temporal aspect of 

the maneuver. Typical questions are: Given the slew angle and specific eigenaxis, will 

the spacecraft arrive at the desired quaternion at the correct time?  Is there another axis 

the spacecraft can slew about more quickly to image something else?  Even with 

automation, trajectory planning becomes a time-consuming task. It may be far easier 

from an operational point of view to operate within a single capability, even if it means a 

loss of performance. This procedural limitation further reduces the operable reaction 

wheel momentum space polyhedron to the largest inscribed sphere, which provides 

guaranteed capability achievable in every direction. A simple example is a sphere 

inscribed inside of a cube (Figure 1). The envelope (cube) restricts the magnitude of the 

vector to 1.0 in some directions, while the maximum magnitude is 1.73 at the vertices. 

This amounts to a non-uniform momentum space, offering values of momentum about 

some axes that are considerably less than others. If operating at the envelope, the motion 

is difficult to predict without correlating the specific eigenaxis with the available 

momentum. Therefore, the engineer might design to the lowest magnitude (sphere) and 

provide this momentum limit to the planners as their planning constraint for travel about 

any axis. The same logic can be applied for torque limitations, but the main point here is 

that some performance is lost due to the need to simplify other aspects of spacecraft 

operations. 
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Figure 1.  Sphere Inscribed within a Cube 

D. OBJECTIVES AND SCOPE OF THIS THESIS 

This thesis is an attempt to close some of the performance gaps between reaction 

wheels and CMGs, with the hope of identifying some key regions where reaction wheels 

may actually outperform CMGs. The true capabilities of reaction wheels are therefore 

explored to determine whether or not such an improvement is even feasible. The shaped 

trajectory used on the Clementine spacecraft [12] is developed (Chapter III) and analyzed 

(Chapter V). This maneuver becomes the basis for comparison of two different reaction 

wheel control algorithms that were developed as part of this thesis. 

The main development is the time-optimal maneuver, which merges shaped 

torque feedforward with shaped quaternion and spacecraft body rate feedback (Chapter 

V). This approach avoids the mathematical limitations of pseudo-inverse control 

allocation by applying torque signals directly to the reaction wheels. The caveat of using 

feedforward plus feedback is that a margin must be built in to account for uncertainties. 

This adds to the body of knowledge because the use of optimal quaternion and body rate 

trajectories has the ability to correct for spacecraft parameter uncertainties and 

disturbances. An approach for adding system margin based on a level of uncertainty is 

discussed. Optimal solutions are solved using DIDO [21] and then propagated through a 

computer simulation of the spacecraft dynamics to verify their feasibility.   
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The second reaction wheel enhancement is an extension of the time-optimal 

trajectory, but limited to the pseudo-inverse space. This method again breaks away from 

the eigenaxis, but operates entirety within the confines of the L2 volume. This allows the 

control engineer to upload the time-optimal quaternion trajectory instead of simply the 

eigenaxis quaternion trajectory [12]. Since the only change is the shape of the trajectory, 

it is not very intrusive on the current employment of a standard shaped quaternion 

trajectory implementation. This method will be introduced at the end of Chapter V. 

To aid in the setup of the problem, the spacecraft, reaction wheel, and CMG 

dynamics will be derived from first principles. This is done in Chapters II, IV, and VI, 

respectively. The equations of motion are then implemented within Simulink, which will 

act as a computer simulation of the actual nonlinear spacecraft dynamics. Various control 

algorithms will be applied to the same simulation to retain the structure of the model. 

Either the reaction wheel or CMG simulations can be selected as the current MED device 

within the model. Simulink also offers a graphical depiction of mathematical changes to 

the full dynamic setup, whereas changes can be hidden within loops if utilizing 

MATLAB alone.   

The sphere concept is applied to the time-optimal case. For a series of time-

optimal maneuvers between any two quaternions, it is shown how the minimum 

guaranteed momentum and torque can be derived for any direction of travel about any 

effective eigenaxis. This adds the ability for the planner to devise a single slew rate over 

any rotation angle, because the sphere remains independent of rotation axis and angle 

size. The effective sphere increases in size twice from the smallest inscribed sphere, once 

for each of the two optimal control techniques mentioned above. Therefore, two levels of 

ACS improvement are given as part of this work. Chapter V presents the concept of 

effective eigenaxis for an optimal maneuver and the details of the derivation.  

A new technique for visualizing slews is introduced in Chapter VII. This method 

utilizes the normalized momentum and torque envelopes as the surface to display 

momentum and torque vectors throughout the maneuver. In the literature review, 

eigenaxis and quaternion traces were found, which only accounts for the path traveled. 

This new visualization tool allows the behavior of the rate and acceleration to be 
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observed with respect to the available momentum and torque capacity. The tool 

demonstrates fundamental features of the optimal control maneuvers. 

Finally, the performance of all three reaction wheel control approaches are 

compared against that of a like-sized CMG in Chapter VII. Data from the market research 

from over 75 reaction wheels and CMGs is used to generate trends and differences 

between these different systems. A simple method of comparing reaction wheels and 

CMGs is developed. Momentum and torque capacities are compared with slew angle 

sizes to determine regions where reaction wheels outperform CMGs under the various 

control algorithms tested. Concluding remarks and suggestions for future work are given 

in Chapter VIII.  
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II. SPACECRAFT KINEMATICS AND DYNAMICS 

The purpose of this chapter is to develop the spacecraft kinematics and dynamics. 

Spacecraft attitude kinematics will be modeled using quaternions. Spacecraft dynamics 

will be derived from first principles, showing the dynamic relationship between the 

momentum exchange device (MED) action and the spacecraft body reaction. The MED 

assembly (subscript medA in this chapter) is any generic arrangement of momentum 

exchange devices. It can be 3, 4, or n reaction wheels, n CMGs, or any combination of 

thereof. 

A. MODELING A SPACECRAFT 

The spacecraft, MED assembly, and feedback can be modeled within Simulink, 

shown in Figure 2.   

 
Figure 2.  Spacecraft Simulation Model 

Given a desired (commanded) quaternion and a current quaternion state, a 

quaternion error vector is produced. The controller attempts to drive that error to zero by 

producing an appropriate torque on the spacecraft. The MED Assembly attempts to 

produce that torque. The Spacecraft Dynamics model the spacecraft response, with torque 

disturbances (Td) possible, but these are not considered in this thesis. The spacecraft 

kinematics determines the current quaternion state. In this thesis, orbital motion is not 
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considered, so Nω O = 0 , but it is shown to clarify the relationship between Nω B  and 
Oω B . The rate of the body with respect to the orbit is utilized within the spacecraft 

kinematics. This is determined by subtracting the orbital motion Nω O  from Nω B .    

 
Nω B = Nω O + Oω B

Oω B = Nω B − Nω O
  (1) 

Since orbital motion is not considered, Nω B = Oω B . The angular rate of the body 

with respect to inertial space is thus defined in Equation (2). 

 Nω B =

N
ω x

ω y

ω z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

B

  (2) 

B. QUATERNION KINEMATICS 

Quaternion kinematics can be written as a set of four differential equations. The 

first three quaternions can be written as q123 , while q4 is kept as a separate dynamic 

equation for simplicity, shown in Equation (3) [6, Algorithm 5.76]. 

 

 

q123 =
1
2
q4

Oω B − Oω B × q123( )
q4 = − 1

2
Oω B( )T q123

 (3) 

where q123 = q1 q2 q3⎡
⎣

⎤
⎦
T

. The entire quaternion vector can be written as 

q = q123
T q4⎡

⎣
⎤
⎦
T

. Another thing to note about quaternions is that the two-norm is 

always equal to one. This allows one to solve for q4 , given q123 . The origin for this thesis 

will be defined as q = 0 0 0 1⎡⎣ ⎤⎦
T

.  

 
q 2 = q1

2 + q2
2 + q3

2 + q4
2 = 1

q4 = 1− q1
2 − q2

2 − q3
2

  (4) 
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C. MODELING SPACECRAFT KINEMATICS 

Equation (3) is modeled into the Spacecraft Kinematics Simulink block, shown in 

Figure 3. The direction cosine matrix (DCM) mentioned is only used to determine the 

disturbance torques and is not used here as the disturbances are taken to be zero. 

 
Figure 3.  Spacecraft Kinematics Model 

D. SPACECRAFT DYNAMICS 

For a rigid body spacecraft with no external torques applied, the total angular 

momentum must be conserved. Since the total angular momentum htot
N  must be constant, 

then a positive variation in the MED assembly angular momentum hmedA
N  will have an 

opposite impact on spacecraft angular momentum hs/c
N  and vice versa. All momenta are 

written with respect to the inertial frame. 

 
htot
N = hs/c

N + h
medA

N

where  htot
N = constant

  (5) 
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Angular momentum is equivalent to the product of inertia and angular rate 

h = Jω( ) . Applied specifically to the spacecraft, Js/c  represents the total structural 

inertia of the spacecraft. The inertia of the MED assembly is included within the 

spacecraft inertia. All configuration changes of the MED assembly with respect to the 

relatively small spacecraft body angular velocity will be considered negligible 

 
JmedA

Nω B ≈ 0( ) . The angular rate of the spacecraft is expressed in the body frame relative 

to the inertial frame ω s/c =
Nω B .  

 hs/c
B = Js/cω s/c = Js/cbody + JmedA( ) Nω B   (6) 

In this thesis, equations often  are written in dyadic form to ensure that notation of 

the bases is clearly understood. Some derivations involving multiple frames can be easier 

manipulated (and understood) when utilizing dyadic form. Following this notation and 

assuming a diagonal inertia tensor, Equation (6) can be rewritten as  

 

 

hs/c
B = js/c11b̂1b̂1 + js/c22b̂2b̂2 + js/c33b̂3b̂3( )• ω xb̂1 +ω yb̂2 +ω zb̂3( )
= js/c11ω xb̂1 b̂1 i b̂1( ) + js/c11ω yb̂1 b̂1 i b̂2( ) + js/c11ω zb̂1 b̂1 i b̂3( )
+ js/c22ω xb̂2 b̂2 i b̂1( ) + js/c22ω yb̂2 b̂2 i b̂2( ) + js/c22ω zb̂2 b̂2 i b̂3( )
+ js/c33ω xb̂3 b̂3 i b̂1( ) + js/c33ω yb̂3 b̂3 i b̂2( ) + js/c33ω zb̂3 b̂3 i b̂3( )

  (7) 

Since b̂1, b̂2, b̂3  are orthogonal,  b̂i i b̂i = 1 and  b̂i i b̂j = 0 . This leads to 

 hs/c
B = js/c11ω xb̂1 + js/c22ω yb̂2 + js/c33ω zb̂3  . (8) 

Sometimes it will be more convenient to show an equation in matrix form, 

Equation (9), but either form can be used universally.  

 hs/c
B =

js/c11 0 0

0 js/c22 0

0 0 js/c33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

B

ω x

ω y

ω z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

B

=

js/c11ω x

js/c22ω y

js/c33ω z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

B

  (9) 
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Since angular momentum must be constant, the derivative with respect to time 

must be zero.   

  
htot
N = hs/c

N + h
medA

N = 0   (10) 

External torques can be added as disturbance torques per Equation (11). 

  
htot
N = hs/c

N + h
medA

N = τ ext
N   (11) 

Disturbance examples in LEO are gravity gradient, aerodynamic loads, and solar 

radiation. These and other external torques will be considered negligible in this thesis and 

will be set to zero (τ ext
N = 0 ).   

Equation (10) reveals that the spacecraft and MED assembly angular momentum 

rates must be equivalent in magnitude, opposite in direction. Also, the torque required to 

manipulate the spacecraft corresponds to the spacecraft angular momentum derivative in 

the inertial frame  
hs/c
N = τ req

N . Thus, the two terms can be used interchangeably to express 

the torque applied to the spacecraft by the MED assembly. Accordingly, the torque 

required of the MED assembly is equivalent to the negative torque in the body frame, 

shown in Equation (12). 

  
h
medA

N = − hs/c
N = −τ req

N   (12) 

To obtain the angular momentum rate with respect to the reference frame, the 

angular rate between the frames is necessary. Therefore, the angular momentum rate 

(torque) with respect to the inertial frame is equal to the sum of the torque in the body 

frame and the cross product between angular rate and angular momentum. 

  
hs/c
N = hs/c

B + Nω B × hs/c
B   (13) 

The time derivative of Equation (6) is shown in Equation (14). The  
Js/c

component is only applicable if fuel is being expended during the maneuver or if flexible 

elements are causing change. It is assumed that any changes would be very small; 

therefore the spacecraft can be modeled as a rigid body. Moreover, it is assumed that the 
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inertia of the spacecraft is not changing over the course of a maneuver and the term is 

zero, shown in Equation (15). 

  
hs/c
B = Js/c

Nω B + Js/c
N ω B   (14) 

  
hs/c
B = Js/c

N ω B   (15) 

Substituting Equation (6) and Equation (15) into Equation (13) yields 

  
hs/c
N = Js/c

N ω B + Nω B × Js/c
Nω B   (16) 

Equation (17) shows the derivation in matrix form. 

 

 

hs/c
B =

js/c11 ω x + js/c33 − js/c22( )ω zω y

js/c22 ω y + js/c11 − js/c33( )ω xω z

js/c33 ω z + js/c22 − js/c11( )ω yω x

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

  (17) 

The derivation may also be carried out in dyadic form: 

 

 

hs/c
B = js/c11 ω xb̂1 + js/c22 ω yb̂2 + js/c33 ω zb̂3

+ ω xb̂1 +ω yb̂2 +ω zb̂3( )× js/c11ω xb̂1 + js/c22ω yb̂2 + js/c33ω zb̂3( )   (18) 

 

 

hs/c
B = js/c11 ω xb̂1 + js/c22 ω yb̂2 + js/c33 ω zb̂3

+ js/c33 − js/c22( )ω zω yb̂1 + js/c11 − js/c33( )ω xω zb̂2 + js/c22 − js/c11( )ω yω xb̂3

= js/c11 ω x + js/c33 − js/c22( )ω zω y( )b̂1
+ js/c22 ω y + js/c11 − js/c33( )ω xω z( )b̂2
+ js/c33 ω z + js/c22 − js/c11( )ω yω x( )b̂3

  (19) 

Correspondingly, by referring back to Equation (12), the torque of the MED 

assembly is related to the spacecraft torque per Equation (20). The MED portion is 

written in the inertial frame and includes the stored momentum in the body frame, to be 

later derived in Chapters IV and VI for reaction wheels and CMGs, respectively. 

  
h
medA

N = −Js/c
N ω B − Nω B × Js/c

Nω B   (20) 
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Rewriting the angular momentum rate in Equation (20) as its corresponding 

torque yields  

 τ
medA

N = −τ
s/c

B − Nω B × Js/c
Nω B   (21) 

E. MODELING SPACECRAFT DYNAMICS 

As a slight variation of Equation (21), Equation (22) is modeled within the 

Spacecraft Dynamics Simulink block, shown in Figure 4.   

 
 

τ
s/c

B = −τ
medA

N − N ω B × Js/c
Nω B

Nω B = Js/c
−1τ

s/c

B∫ dt
  (22) 

Note that the disturbance torques τ d = 0 . Thus, this term is not included in (22).   

 
Figure 4.  Spacecraft Dynamics Model 
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III. EIGENAXIS REORIENTATION 

While traveling at several thousand kilometers per second, a spacecraft is 

commanded to move from one quaternion state to another. This reorientation time may 

take a second or two for small maneuvers or tens of seconds to minutes for large 

maneuvers. For LEO Earth-imaging spacecraft, this reorientation must occur swiftly and 

precisely. Reorientation (slew) time is time lost as it is time not conducting mission-

essential targeting. Since spacecraft can traverse key areas in minutes (or possibly 

seconds), slew time ultimately limits the number of targets per pass. Since these multi-

million or billion dollar spacecraft are only productive when they are not slewing, slew 

time is productivity lost. 

A. SHORTEST ANGLE MANEUVER 

A simple, effective slew maneuver is the eigenaxis reorientation or eigenaxis 

slew. The eigenaxis slew is a rotation along the shortest arc between two attitudes. This 

maneuver is used due to its simplicity, predictability, and reasonably rapid speed, as 

opposed to performing successive rotations about the individual body axes. Given three-

axis control, there are infinite paths that may be taken to transition between two attitudes. 

The eigenaxis slew utilizes the shortest of these paths. The axis of rotation is known as 

the eigenaxis, whose direction remains constant and orthogonal to the direction of 

angular travel throughout the maneuver. Assuming that the spacecraft can be reoriented 

while maintaining rotation about the eigenaxis, the problem can be simplified into a 

single angle slew, shown in Figure 5. 
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Figure 5.  Eigenaxis Slew 

For a reorientation from one angle to another, a direction cosine matrix (DCM) 
BRA  (discussed in greater detail in Chapter IV) can be used to show the necessary 

relative reorientation from reference A to reference B. There is at least one eigenvector 

associated with the DCM that produces a unity eigenvalue shown by Sidi [5, Algorithm 

4.1]. 

 BRAe = 1e   (23) 

Equation (23) represents the fact that instead of breaking a DCM into a series of 

three consecutive rotations, the reorientation can be created by using a single rotation 

about a specific axis or eigenvector. Unity eigenvalue occurs when rotating about the 

principle eigenvector or eigenaxis. Because of this, the eigenaxis slew is the shortest 

angle maneuver.   

Assume the spacecraft’s orientation is originally described by quaternions such 

that q0 = [ q01 q02 q03 q04 ]
T  with a requirement to slew to some final quaternion 

state q f = [ qf1 qf2 qf3 qf4 ]
T .   Note, q4  is the scalar. The quaternion difference qd  

can be described by Equation (24) [6, Algorithm 7.69]. 
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qd1
qd2
qd3
qd4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

qf4 qf3 −qf2 −qf1
−qf3 qf4 qf1 −qf2
qf2 −qf1 qf4 −qf3
qf1 qf2 qf3 qf4

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

q01
q02
q03
q04

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (24) 

Equation (25) shows the relationship between the quaternion difference, the 

eigenaxis, and the slew angle [5, Algorithm 4.11]. 

 
qd123 = esin

θd

2
⎛
⎝⎜

⎞
⎠⎟

qd4 = cos θd

2
⎛
⎝⎜

⎞
⎠⎟

  (25) 

Rearranging Equation (25), the desired slew angle can now be solved for. 

 θd = 2cos
−1 qd4( )  (26) 

The eigenaxis can now be solved as 

 e = 1
sin θd / 2( ) qd123   (27) 

B. QUATERNION FEEDBACK 

Using an eigenaxis slew, the reorientation problem can be simplified into a single 

angle slew, like the tracing of an arc of a circle on a 2D plane. This section will explain 

how the complicated spacecraft dynamics derived in Chapter II can be modeled as a 

linear double integrator, providing the spacecraft travels precisely along this eigenaxis 

arc. The double integrator model will be obtained from the eigenaxis quaternion feedback 

(EQF) control logic often used in spacecraft ACS [6, Algorithm 7.74]. 

 u '' = −k Js/c qe123 − c Js/c
Nω B + Nω B × Js/c

Nω B ,  (28) 

Recall the nonlinear spacecraft torque from Equation  (16). This inertial torque is 

what the EQF controller is attempting to control u '' = τ s/c
N( ) .   
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  u '' = τ s/c
N = Js/c

N ω B + Nω B × Js/c
Nω B . (29) 

Equations (28) and (29) both contain the same gyroscopic coupling term, a term 

not conducive to solving a linear trajectory along an arc. The nonlinearity can be 

eliminated and a new control u’ is determined in Equation (30). This shows that the 

gyroscopic coupling term was simply added to the EQF to eliminate this nonlinearity in 

the control. 

 

 

u ' = u ''− Nω B × Js/c
Nω B

= −k Js/c qe123 − c Js/c
Nω B

= Js/c
N ω B

  (30) 

 Since  τ s/c
B = Js/c

N ω B  from Equation (15), the control u’ is effectively a torque 

control in the body frame. Equation (30) can be rearranged as follows.  

 
 

u ' + k Js/c qe123 + c Js/c
Nω B = 0

Js/c
N ω B + k Js/c qe123 + c Js/c

Nω B = 0
  (31) 

The constant inertia can then be divided out to assume acceleration as the control 

variable.   

 u = u ' / Js/c   (32) 

 
 

u + k qe123 + c
Nω B = 0

N ω B + k qe123 + c
Nω B = 0

  (33) 

The problem thus far is measured in three-dimensional space. But the purpose of 

an EQF is to maintain the trajectory along the eigenaxis. Since the arc is measured along 

a plane, the quaternion trajectory can be measured approximately as a single angle, while 

the body rate can be measured as a single angular rate, both measured as an error. The 

simplification is explained in [6, Example 7.15].  

 θE = θ −θd   (34)  

 
 

u + k θ −θd( ) + c θ − θd( ) = 0
θE + k θ −θd( ) + c θ − θd( ) = 0

  (35) 
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In Equation (33), Nω B  was not considered an error term because the control 

assumes no shaped angular velocity. Instead, it regulates it to zero. Therefore, the rate 

error is equal to body rate  
θE = θ = Nω B . The fundamental formula for a proportional 

plus derivative controller (PD) is shown as 

  
θE + kθE + c θE = 0   (36) 

Equation (36) is now written in terms of a double integrator, where the control is 

equal to the second derivative of the signal  u =
θE =α .   

 
 

u =α
= −kθE − c θE

  (37) 

Assume a desired angle and rate are given. The controller can now regulate the 

acceleration signal to drive the error to zero. As stated previously, the desired rate is  

zero, therefore it is eliminated from the equation. This means that Equation (28) was 

treated as a rest-to-rest maneuver. The double integrator in Equation (38) is implemented 

in Figure 6. 

 u =α = −k θ −θd( )− cω   (38) 

 
Figure 6.  PD Control of a Double Integrator Model 

Therefore, the EQF controller is essentially just a PD control system in disguise. 

The gyroscopic coupling term can be added back in to the PD controller, just to be 
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subtracted back out by the spacecraft physics. Therefore, the spacecraft can be slewed as 

a double integrator, as shown in the simplistic spacecraft simulation in Figure 6. 

C. GAIN DESIGN FOR QUATERNION ERROR FEEDBACK 

If the goal is to perform a rest-to-rest reorientation, θd  may be fixed and act as a 

step input, which moves from zero to the desired angle. As with any step input, the error 

is very large at first and decreases significantly over time. Proportional and Differential 

Gains k,c( )  must therefore be chosen carefully.  

Underdamped systems are the quickest to respond, but must be carefully designed 

so the torque (acceleration) and overshoot do not become too large. The percent 

overshoot (Mp) is a measure of the overshoot compared to the starting/ending condition 

difference. For the following example, 10% overshoot is used. Settling time ts  is the time 

it takes the system to fall and remain within a certain band, commonly determined by 

imaging and targeting requirements (e.g., 2% of the final or steady-state value). An 

example of gain selection is shown in (39) such that the percent overshoot and settling 

time is the selection criteria for damping ratio and natural frequency [22, Algorithms 

4.39, 4.42].  

 
ζ =

− ln Mp /100( )
π 2 + ln Mp /100( )

ω n =
4
ζ ts

  (39) 

The previously mentioned k and c are the feedback gains for the second order, 

homogeneous system shown in Equation (40). The same canonical expression is shown 

in Equation (41) in terms of the damping ratio and natural frequency.   

  e + c e+ k e = 0   (40) 

  e + 2ζω n e+ω n
2e = 0   (41) 

 

 



 23 

Now, it can be seen that 

 
c = 2ζω n

k =ω n
2

.
  (42) 

Using the feedback control system mentioned in Section C, the ideal gains for a 

quick 10° slew will be much different than those for a 60° slew due to the fact that the 

control system operates proportional to the angle error, given the same hardware. As an 

example, Figure 7 shows the time history of the system variables for the underdamped 

case. Both 10° (solid lines) and 20° (dashed lines) reorientations occurred using the same 

set of gains. Notice that they both settle at the same time. The 20° slew, however, shows 

significantly higher acceleration and rate commands. The phase space indicates that both 

slews follow essentially the same trajectory, and the magnitudes are scaled since the 

system is linear.   

   
Figure 7.  Underdamped Reorientation (solid 10°, dashed 20° slews)      

It would be expected that a 10° slew could occur about twice as fast as a 20° slew 

for a given value of peak acceleration, but naturally, the linear control system prevents 

this. As a further example, the same 10° slew is compared with a 60° slew to show 

further exaggeration of this restriction. Figure 8 demonstrates that the required 

acceleration and rates increase significantly with the slew size. 
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Figure 8.  Underdamped Reorientation (solid 10°, dashed 60° slews) 

At some point, the actuators will not be able to produce the required torque 

(acceleration) and/or angular momentum (rate). Suppose the 10/20° slews from Figure 7 

are now subject to torque and momentum saturation limits that are equivalent to 5°/s2 and 

4°/s, respectively (values representing a very agile spacecraft). This means the MED 

array cannot produce more than these limitations around the desired eigenaxis. Figure 9 

demonstrates the saturations by flat regions, where maximum torque and acceleration are 

held for extended periods of time. The phase space indicates both trajectories were 

saturated, but the 20° slew was saturated twice. Within the same 20 seconds, the 20° slew 

was not complete due to the torque and momentum limits.   
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Figure 9.  Underdamped Reorientation (solid 10°, dashed 20° slews) α, ω Limited 

Notice that the spacecraft began at maximum torque and held it until the 

momentum limit was reached. At that point, maximum momentum was held until 

crossing the target angle, after which the spacecraft decelerated at maximum torque.  

Engineers typically want to optimize trajectories, minimizing overshoot and 

settling time to reduce wasted transient distance and time. To perform a slew quickly 

with no overshoot, the critically damped case may be tried (Figure 10).  

 
Figure 10.  Critically Damped Reorientation (solid 10°, dashed 20° slews) 
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Notice that in Figure 10, both slews do not require anywhere near maximum torque 

or momentum. In this simulation, using the critically damped gains seems like a good 

approach. In a real spacecraft, the mass (inertia) will decrease over time as fuel is 

expended. Thus, space system engineers must plan in a buffer factor in order to account 

for the change in mass. As a “rule of thumb,” an engineer may select an initial damping 

ratio around ζ = 0.7 . As mass decreases, the damping ratio increases since the two 

values are inversely proportional ζ ∝1/m( ) . The damping ratio will eventually approach 

critical damping and move into overdamped towards the end of the life of the spacecraft. 

Thus, one could argue that the critical damping or near-critical damping scenarios would 

not be useful in spacecraft design.  

A simple approach to control system design is to devise a set of gains that work 

across a large range of slew angles. To satisfy all angles, the control engineer must design 

the gains for the largest slew angle the spacecraft is regularly expected to perform. If this 

is done using a linear model, the system may perform very poorly for small angle 

reorientations. Therefore, the engineer can be forced to overdesign the hardware to satisfy 

the torque and momentum requirements for smaller angle maneuvers.   

D. TRAJECTORY SHAPING 

Gain design is very delicate because the engineer must tune the gains special for 

the spacecraft, regardless of slew size. Instead, input shaping allows a fixed set of gains 

that must correct for only a discrete minimal error to be utilized for multiple slew sizes. 

Optimal trajectories can be pursued without major hardware upgrades. 

Input shaping is an alternative to using a step command as the input to the attitude 

control system. Input shaping can be introduced in the form of a set of shaped torque 

commands, represented as an acceleration input in Figure 13 [17]–[18]. This is ideal, 

because it completely avoids the need for a controller. Torque/acceleration input shaping 

is, however, unrealistic because the system would be operated in the open loop. This 

means that it does not have a feedback mechanism to account for uncertainties in the 

spacecraft inertia and external disturbances on the spacecraft, which is undesirable. 
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Figure 11.  Torque Input Shaping Model 

A better approach is to shape the trajectory of the input to a closed-loop system: 

the input angle itself. Rather than simply inserting a desired angle θd  and letting the 

onboard controller calculate how to respond. The desired spacecraft response can be 

decided ahead of time and then implemented as a series of small steps. For example, a 

10° slew can be divided into 100 or 1,000 incremental steps. Now, the gains can be 

optimized for the step size (fixed or extremely small) rather than the entire maneuver size 

(variable).   

 
Figure 12.  Angle Input Shaping Model 

As long as the spacecraft model is reasonably accurate, the path can be 

predetermined accurately. The feedback loop then adjusts the path to accommodate 

spacecraft uncertainties and external disturbances. Similar methods have been used in at 
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least a few cases in the industry [12]–[14]. The input shaped trajectory θd  is fed to the 

system much like that in Figure 12.    

The ideal input is the trapezoidal input (referring to shape of ω ) shown in Figure 

13. This input accounts for both the torque and momentum limits a priori to control the 

error θd  so that the control system does not saturate. 

  
Figure 13.  Rate Limited Eigenaxis Slew 

Due to the shape of the angular rate trajectory, the torque/momentum limited 

input is also referred to as a bang-coast-bang maneuver. This is exactly the command-

generated trajectory used for the Clementine spacecraft that was used for lunar mapping 

in 1994 [12, Figure 2]. The eigenaxis and trajectory angle were first calculated by the 

onboard computer to transit from the current quaternion to the desired quaternion. In 

Chapter V, it will be confirmed that this trapezoidal input is in fact the time-optimal 

solution for eigenaxis slews.  
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IV. REACTION WHEELS 

Reaction wheels have their physical limitations. They have maximum angular 

rates and accelerations that must be modeled. This will ensure that even if a large torque 

is demanded, only the maximum MED assembly torque will be applied. In order to apply 

the saturations, a model of the reaction wheels must be created.   

A basic model of a reaction wheel is shown in Figure 14. The reaction wheel is 

shown in its own local frame, referenced as the wheel frame with its spin axis aligned 

with the ŵ3  axis. A motor, attached to the body frame, drives rotation of the wheel. The 

principle of operation is for the motor to apply a torque to the wheel. This causes the 

wheel to rotate quickly. The resultant equal and opposite torque is applied back through 

the motor to the body frame. This causes a rotation of the much larger spacecraft body. 

The momentum and torque vectors align with the ŵ3  axis.   

 
Figure 14.  Reaction Wheel Schematic 



 30 

A. ORIENTATION 

The angular momentum of a single reaction wheel (RW) within its (ith) wheel 

frame Ŵ  with respect to body can be shown in the spacecraft body frame B̂  through a 

simple rotation. The fundamental formula for this change of basis is given as 

 hi
B = BRWi⎡⎣ ⎤⎦hi

Wi   (43) 

In dyadic form, (43) can be looked at as the projection of the wheel frame onto 

the body frame (component-wise dot product). 

 hi
B = b̂ŵi

T⎡⎣ ⎤⎦hi
Wi =

B

b̂1 • ŵi1 b̂1 • ŵi2 b̂1 • ŵi3

b̂2 • ŵi1 b̂2 • ŵi2 b̂2 • ŵi3

b̂3 • ŵi1 b̂3 • ŵi2 b̂3 • ŵi3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Wi

hi
Wi   (44) 

This transformation can be completed as a matter of three fundamental rotations, 

and represented as a direction cosine matrix (DCM). A DCM is an invertible square 

matrix where the transpose is the inverse such that 

 BRWi = WiRB⎡⎣ ⎤⎦
T

  or  BRWi BRWi⎡⎣ ⎤⎦
T
= I  (45) 

This property allows a much more straightforward approach of first placing the 

RW in the B̂  frame, converting to the Ŵi  frame via WiRB , and then using the transpose 
BRWi  to convert back. In the example shown in Figure 15a, the MED is placed directly on 

the B̂  xyz origin, rotating about the b̂3  axis per Figure 14. This produces an angular 

momentum hrw
B  directly in the b̂3  direction for a reaction wheel.   
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Figure 15.  Reaction Wheel Transformation 

First, a fundamental 3 rotation about the shared b̂3 / ŵ3  axis must be completed to 

orient the ŵ1  and ŵ2  axes for subsequent rotations (Figure 15b). This will allow for 

multiple reaction wheels placed along the same skew angle (β ), forming a pyramid. This 

first rotation can be represented in (46). 

 R3 α i( ) =
cosα i sinα i 0
−sinα i cosα i 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  (46) 

Assuming α = constant  for the initial 3 rotation of the representative wheel, a 

2 rotation is now completed about the ŵ2  axis (Figure 15c). This rotation is used for both 

reaction wheels and CMGs, and is referred to as the skew angle. The skew angle is 
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normally assumed the same across all devices, so the subscript “i” will not be used to 

distinguish which MED it refers to. This rotation can be represented in Equation (47). 

 R2 β( ) =
cosβ 0 −sinβ
0 1 0
sinβ 0 cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  (47) 

The previous series of rotations can now be combined into a single transformation 

converting a vector from the body frame to the wheel frame. 

 

WiRB = R2 (β )R3(α i )

=
cβ 0 −sβ
0 1 0
sβ 0 cβ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
2

cα i sα i 0
−sα i cα i 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
3

=

Wi

cα icβ sα icβ −sβ
−sα i cα i 0
cα isβ sα isβ cβ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

  (48) 

It follows from Equation (45) that BRWi  is now the transpose, which is equivalent 

to the reverse sequence via the negative angle of each rotation. Equation (49) is the 

physical representation of the dot product matrix shown in Equation (44). 

 

BRWi = R3(−α i )R2 (−β ) =
WiRB⎡⎣ ⎤⎦

T

=

B
cα icβ −sα i cαsβ
sα icβ cα i sαsβ
−sβ 0 cβ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Wi

  (49) 

Note also that 

 

B

b̂1 • ŵi1 b̂1 • ŵi2 b̂1 • ŵi3

b̂2 • ŵi1 b̂2 • ŵi2 b̂2 • ŵi3

b̂3 • ŵi1 b̂3 • ŵi2 b̂3 • ŵi3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Wi

=

B
cα icβ −sα i cαsβ
sα icβ cα i sαsβ
−sβ 0 cβ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Wi

  (50) 
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As an example, place the initial MED at angle α = 0° . The resultant 

transformation from the Ŵ  frame to the B̂  frame is shown in Equation (51) for a 

reaction wheel. 

 BRrw
W = R3(−0°)R2 (−β ) =

B
cβ 0 sβ
0 1 0

−sβ 0 cβ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

W

  (51) 

Recall that the RWs in Equation (51) were stationed at α = 0° . A classic 

configuration is using four MEDs in a square pyramid configuration in which each of the 

MEDs are placed  90  apart [15]. Arranged at the proper skew angle, this tricetrix 

arrangement maximizes torques in all directions, minimizing torque cancellations. This 

also provides redundancy in case of a single wheel failure. The arrangement used will be: 

α1 = 0°,α 2 = 90°,α 3 = 180°,α 4 = 270° . Figure 16 demonstrates this common placement.   

 
Figure 16.  Body Frame to MED Rotations 
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Based on the wheel axis description mentioned above, the angular momentum in 

the wheel frames can be written as  

 

hrwi
Wi =

0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Wi

hi  . (52) 

Transforming angular momentum from the Ŵ  frame to the B̂  frame using 

Equation (43) and α = 0°  yields (53). 

 hrwi
B =

sβ
0
cβ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

hi   (53) 

or in general form 

 

 

hrwi
B =

b̂1 i ŵi3

b̂2 i ŵi3

b̂3 i ŵi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

hi  . (54) 

The total angular momentum of the system is simply the sum of each of the 

MEDs in the body frame. 

 hmedA
B = hmedi

B

i

n

∑   (55) 

For the reaction wheel case in Equation (54), the individual rotation matrix and 

angular momentum components can be combined into the product of two matrices, 

equivalent to Equation (55). The first matrix represents the orientation of each wheel with 

respect to the body frame, separated as individual columns. For n MEDs, this 3xn 

orientation matrix is multiplied by an nx1 vector containing the momentum in the wheel 

frame as shown in Equation (56). 
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hrwi
B

i=1

n

∑ =

B

b̂1 i ŵ13
b̂2 i ŵ13
b̂3 i ŵ13

b̂1 i ŵ23
b̂2 i ŵ23
b̂3 i ŵ23



b̂1 i ŵn3

b̂2 i ŵn3

b̂3 i ŵn3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

W

h1
h2

hn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

W

  (56) 

The 3xn matrix that relates n MEDs to the principle body axes will be labeled this 

point forward as the orientation matrix BZW . Since it contains only elements from the 3rd 

column of the original rotation matrix, it will be further described with a subscript 3: 
BZ3

W . 

 

 

BZ3
W =

B

b̂1 i ŵ13
b̂2 i ŵ13
b̂3 i ŵ13

b̂1 i ŵ23
b̂2 i ŵ23
b̂3 i ŵ23



b̂1 i ŵn3

b̂2 i ŵn3

b̂3 i ŵn3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

W

  (57) 

Now, Equation (56) can be rewritten as  

 hrw
B = hwi

B

i=1

n

∑ = BZ3
WhW   (58) 

 where  

 

hW =

h1
h2

hn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

W

 . (59) 

For the square pyramid mentioned, the orientation matrix is shown in Equation 

(60) for reaction wheels. 

 BZ3
W ==

B

sβ
0
cβ

0
sβ
cβ

−sβ
0
cβ

0
−sβ
cβ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

W

  (60) 
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Any RW orientation configuration Z can be modeled by specifying  

the appropriate α  and β  rotations. Note that Equation (60) assumes 
 

α = 0 90 180 270⎡⎣ ⎤⎦
T

. 

Other than the case where n=3, Z will always be a 3xn matrix where n>3. This is 

caused because the system is over-actuated, i.e., more wheels exist than are necessary to 

control the spacecraft attitude. A common approach for performing control allocation in 

the over-actuated case is to use the pseudo-inverse to map three orthogonal commands in 

the body frame to n commands for the individual wheels.    

 Z+ = ZT ZZT( )−1   (61) 

B. DIFFERENTIAL EQUATIONS OF MOTION 

Like the spacecraft, the momentum of the reaction wheel can be defined as the 

product of wheel inertia and angular velocity of the wheel, all with respect to the inertial 

frame. 

 Hwi
= Jwi

Nω i
Wi   (62) 

Previously, the wheel inertia was combined into the spacecraft inertia in Equation 

(6), where hs/c
N = Js/cbody + JmedA( ) Nω B . Therefore, the wheel inertia rotating with the 

spacecraft body must be pulled out, leaving only the configuration of the wheel with 

respect to the body.  

 
Hwi

= Jwi
Nω i

B + Jwi
Bω i

Wi

Hwi
− Jwi

Nω i
B( ) = hwiWi

  (63) 

 hwi
Wi = Jwi

Bω i
Wi =

jwi11 0 0

0 jwi22 0

0 0 jwi33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Wi

0
0
Ωi

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Wi

=
0
0

Jwi33Ωi

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Wi

  (64) 

Shown in dyadic form: 
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hwi
Wi = jwi11ŵi1

ŵi1
+ jwi22ŵi2

ŵi2
+ jwi33ŵi3

ŵi3( )• Ωiŵi3( )
= jwi33Ωiŵi3

ŵi3 i ŵi3( )
= jwi33Ωiŵi3

  (65) 

Change of basis to the body frame:  

 

 

hwi
B = jwi33Ωiŵi3

i b̂1b̂1 + b̂2b̂2 + b̂3b̂3( )
= jwi33Ωi ŵi3

i b̂1( )b̂1 + jwi33Ωi ŵi3
i b̂2( )b̂2 + jwi33Ωi ŵi3

i b̂3( )b̂3
  (66) 

The dot product of two vector components can be flipped interchangeably (i.e., 

b̂1 • ŵi1 = ŵi1 • b̂1 ). This is important to note because the transformation matrix can now be 

written in the more conventional notation shown in Equation (44). The resultant rotation 

matrix is shown in Equation (67). 

 

hwi
B =

B

b̂1 • ŵi1
b̂1 • ŵi2

b̂1 • ŵi3

b̂2 • ŵi1
b̂2 • ŵi2

b̂2 • ŵi3

b̂3 • ŵi1
b̂3 • ŵi2

b̂3 • ŵi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Wi

0
0

jwi33Ωi

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Wi

=

b̂1 • ŵi3( ) jwi33Ωi

b̂2 • ŵi3( ) jwi33Ωi

b̂3 • ŵi3( ) jwi33Ωi

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B   (67) 

Equation (67) can be simplified into a version containing only the rotation matrix 

portion multiplied by its momentum, expressed in the body frame. 

 

 

hwi
B =

b̂1 i ŵi3

b̂2 i ŵi3

b̂3 i ŵi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

jwi33Ωi   (68) 

From Equation (56), the total angular momentum for n wheels in the body frame 

can be rewritten as  
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hw
B =

B

b̂1 i ŵ13
b̂2 i ŵ13
b̂3 i ŵ13

b̂1 i ŵ23
b̂2 i ŵ23
b̂3 i ŵ23



b̂1 i ŵn3

b̂2 i ŵn3

b̂3 i ŵn3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

W
jw1 33Ω1

jw2 33Ω2


jwn 33Ωn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

W

.

  (69) 

Equation (69) is equivalent to Equation (58), where hw
B = bZ3

whw
W . Within the 

model, the inertia and rates are expanded out in the following manner to keep track of 

them separately. 

 

 

hw
W = JwΩ

W =

jw1 33 0 0 0

0 jw2 33 0 0

0 0  0
0 0 0 jwn 33

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

W

Ω1

Ω2


Ωn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

W

  (70) 

The torque with respect to the wheel frame is the time derivative of Equation (70). 

 
 
τ w
W =

Wd
dt

hw
W( ) = Jw ΩW   (71) 

The torque with respect to the body will be defined as the change in angular 

momentum with between the wheel and body frames. 

 
 
τ w
B =

Bd
dt
hw
B( ) = hwB   where hw

B = BZ3
Whw

W  (72) 

Expanding out these terms following the chain rule yields Equation (73). Since 

this is a reaction wheel, the orientation is fixed and therefore  
B Z3

W = 0 . The inertia is 

assumed to not change with time,  
Jrw = 0 .   

  τ w
B = B Z3

W JwΩ
W + BZ3

W JwΩ
W + BZ3

W Jw Ω
W   (73) 

  τ w
B = BZ3

W Jw Ω
W   (74) 

In dyadic form, a single reaction wheel torque can be found using the derivative 

of Equation (66). 
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Bd
dt
hwi

B( ) = jwi33Ωi ŵi3
i b̂1( )b̂1 + jwi33Ωi ŵi3

i b̂2( )b̂2 + jwi33Ωi ŵi3
i b̂3( )b̂3

+ jwi33 Ωi ŵi3
i b̂1( )b̂1 + jwi33 Ωi ŵi3

i b̂2( )b̂2 + jwi33 Ωi ŵi3
i b̂3( )b̂3

+ jwi33Ωi
̂wi3

i b̂1( )b̂1 + jwi33Ωi
̂wi3

i b̂2( )b̂2 + jwi33Ωi
̂wi3

i b̂3( )b̂3
  (75) 

The inertia of the wheel is not changing with respect to the wheel frame. Also, the 

orientation of the 3 axis of wheel frame is not moving with respect to the body frame. 

  
jwi33 = 0   and  

̂wi3
= 0  (76) 

Equation (75) now becomes  

 
 

Bd
dt
hwi

B( ) = jwi33 Ωi ŵi3
i b̂1( )b̂1 + jwi33 Ωi ŵi3

i b̂2( )b̂2 + jwi33 Ωi ŵi3
i b̂3( )b̂3   (77) 

 

 

Bd
dt
hwi

B( ) =
jwi33 Ωi b̂1 i ŵi3( )
jwi33 Ωi b̂2 i ŵi3( )
jwi33 Ωi b̂3 i ŵi3( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

=

b̂1 i ŵi3

b̂2 i ŵi3

b̂3 i ŵi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

jwi33 Ωi   (78) 

By Euler’s transport theorem adopted from [23, Algorithm 8.18a], the inertial 

derivative of Equation (74) is  

 

 

N d hw
N( )

dt
=

Bd hw
B( )

dt
+ Nω B × hw

B

hw
N = hw

B + Nω B × hw
B

.

  (79) 

Equation (79) can be rewritten by substituting the body torque from Equation (74) 

and body angular momentum terms as  

  τ w
N = BZ3

W Jw Ω
W + Nω B × BZ3

W JwΩ
W   (80) 

By substituting Equation (80) into Equation (12), knowledge that torque is in the 

wheel frame as defined in  τ w
W = Jw Ω

W  from Equation (71), and a rearrangement of terms, 

the result is an equation in terms of the torque of the reaction wheel. This equation now 
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involves the pseudo-inverse to translate torque commands given in the body frame to n 

wheels, shown in Equation (82).  

 −τ req
N = BZ3

Wτ w
W + Nω B × BZ3

W JwΩ
W   (81) 

 τ w
W = BZ3

W⎡⎣ ⎤⎦
+
−τ req

N − Nω B × BZ3
W JwΩ

W( )   (82) 

Further, Equation (82) can be reduced to Equation (83), solving for the reaction 

wheel dynamics in terms of the spacecraft. 

 
 
ΩW = Jw

−1 BZ3
W⎡⎣ ⎤⎦

+
−τ req

N − Nω B × bZ3
wJwΩ

W( )   (83) 

C. MODELING REACTION WHEELS 

In order to apply the physical limits of the reaction wheel actuator, the torque 

required of the assembly must be broken down, torque and wheel speed limit saturations 

applied, and then the torque of the reaction wheel assembly rebuilt in Figure 17. Equation 

(82) is used to break down the torque required and (80) is used to rebuild it.  

 
Figure 17.  Reaction Wheel Model 

This model is contingent that momentum in the wheel frame is derived directly 

from wheel torque from Equation (71) such that 
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 hw
W = τ w

W∫ dt  . (84)  

The wheel torque limitations occur in the individual wheel frames. The rate 

limitations are modeled as wheel momentum saturations. Note, this model does not shut 

off the wheel torque when hi = hmax . It is not necessary for the comparisons in this 

thesis because only torque and momentum limited signals are used.  

D. REACTION WHEEL MOMENTUM SPACE 

By measuring the maximum momentum in any given direction over a 2π  

steradian for a particular reaction wheel configuration, a boundary can be defined that 

describes the maximum momentum capacity of the array. This is the physical limitation 

of the system defined by the vector sum of the maximum capacities of the individual 

momentum wheels. If this boundary is created for every possible direction around a unit 

circle in the body frame, the surface of boundaries is typically known as the momentum 

envelope [15, p. 1607]. To determine the best possible mechanical configuration of 

systems, the volume must be maximized, ideally forming the most spherical shape 

possible. Since each of four wheels is maximized individually, the resultant shape has 

radii larger than hmax . If all four wheels were aligned, a maximum radius of 4 could be 

achieved, leaving zero momentum in other directions. The maximum momentum space 

for an evenly-spaced Δα = 90°( )  four wheel system is achieved when  

 β = cos−1 1
3

⎛
⎝⎜

⎞
⎠⎟
rad = 54.74°  . (85) 

The maximum angle in Equation (85) is shown in [15, p. 1610] as the conjugate 

35.26°. The resulting envelope is shown in Figure 18. The figure was created using a 

mesh of triangles between all surface points. 

Assuming all four wheels have equal momentum storage, Figure 17 is calculated 

as a function of the maximum momentum available to any given wheel hmax . The 

envelope scales symmetrically with the size of the wheel (hmax ). Therefore, larger wheels 

would push the surface outward, allowing more momentum capacity, but the shape would 



 42 

be retained. This is why the dodecahedron is generic for any four-wheel system, but 

unique to only four-wheel systems. A five-wheel system would have a much different 

shape with a maximum at a different angle β  and a larger volume (see [15]).    

  
Figure 18.  Momentum Space for 4 Wheel Reaction Wheel (α= 0,90,180,270°) 

The momentum envelope shown represents the angular momentum available 

about any given rotation axis. During times of maximum momentum use, the momentum 

vector would touch the outside surface of the envelope until the system begins to 

decelerate and momentum decreases back to the center of the shape where momentum is 

zero. The vertices of the momentum envelope indicate optimal axes that allow locally-

rapid rotation rates. Although fourteen vertices exist, only six are global maxima (marked 
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with blue).   The centers of each facet indicate the minima for each respective plane. 

These minima are also the global minima, each marked in magenta. 

The four-wheel polyhedron is again shown in three orthogonal views in Figure 19 

to clarify its shape. The blue maximum vertices (global maxima) occur at magnitudes 

equal to hmax
B = 2.309hmax . The black minor vertices (local maxima) occur at 

hmax
B = 2.0hmax . The minimum hB  is actually zero, but hmin

B  represents the minimum across 

the momentum envelope. The minimum radius occurs at the middle of the flat facets 

where hmin
B = 1.633hmax , interestingly equal for every axis. 

 
Figure 19.  Momentum Space of a 4 Reaction Wheel System 
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Table 1 lists all of the possible configurations of momentum vertices and facet 

minimums. Once normalized, these represent the respective axes with the momentum 

magnitudes listed above.   

 
Table 1.   Reaction Wheel Significant Axes 

From Figure 17, the wheel torque vectors directly align with the wheel 

momentum vectors. This causes a torque envelope equal in shape to that in Figures 18 

and 19. Instead of using hmax  as the scaling factor, the dodecahedron would be instead 

scaled by the maximum individual wheel torque τmax . All maximum and minimum 

vertices are co-aligned with the momentum vertices, just with different units.   

E. LARGEST INSCRIBED SPHERE 

As mentioned in Chapter I, sometimes it is necessary to create artificial 

limitations on a control system. Recall from Figure 18 that the twelve facet minima occur 

at hmin
B = 1.633hmax . Although they are considered minima, they still lie on the momentum 

surface. For example, on axis 1 0 0⎡⎣ ⎤⎦ , momentum up to 1.633hmax  (torque up to 

1.633τmax ) is available. This is the physical system limit that cannot be exceeded for an 

eigenaxis rotation about that specific axis. Since this is the global envelope minimum, a 

sphere can be created with radius 1.633hmax  that includes all twelve points. Such a sphere 

[ 1 1 0 ] [ sin(β) 0 cos(β) ] [ 1 0 0 ]
[ 1 -1 0 ] [ sin(β) 0 .-cos(β) ] [ -1 0 0 ]
[ -1 1 0 ] [.-sin(β) 0 cos(β) ] [ 0 1 0 ]
[ -1 -1 0 ] [.-sin(β) 0 .-cos(β) ] [ 0 -1 0 ]
[ 0 0 1 ] [ 0 sin(β) cos(β) ] [ sin(β) sin(β) 2cos(β) ]
[ 0 0 -1 ] [ 0 sin(β).-cos(β) ] [ sin(β) sin(β).-2cos(β) ]

[ 0 .-sin(β) cos(β) ] [ sin(β).-sin(β) 2cos(β) ]
[ 0 .-sin(β).-cos(β) ] [ sin(β).-sin(β).-2cos(β) ]

[.-sin(β) sin(β) 2cos(β) ]
[.-sin(β) sin(β).-2cos(β) ]
[.-sin(β).-sin(β) 2cos(β) ]
[.-sin(β).-sin(β).-2cos(β) ]

Max$Vertices Minor$Vertices Minimum$Facets
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is the largest possible sphere within the momentum space, shown in Figure 20. 

Restricting commanded momentum to lie within the inscribed spherical volume ensures 

that 1.633hmax  is available about every possible axis.  

 
Figure 20.  Reaction Wheel Momentum Space with Largest Inscribed Sphere 

Of course, 40% more momentum is available about the maximum axes shown  

in Table 1, but in a conventional attitude control system design, this additional 

torque/momentum capacity is sacrificed. This sacrifice is made to ensure a designed slew 

rate is available for any given slew. The inertia of a spacecraft is rarely symmetric and 

equal about every major axis. The resultant is an inertia ellipsoid, further reducing the 

momentum space envelope. This occurs due to the need to ensure the momentum does 

not change with a non-symmetric inertia matrix. The maximum spacecraft inertia value is 

also used about every axis, further limiting the system to enforce consistent slew rates. 
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F. REACTION WHEEL PSEUDO-INVERSE STEERING LOGIC 

The physical limitation of a reaction wheel system was previously discussed. 

Another limitation associated with reaction wheels is the mathematical limitation of the 

Moore-Penrose pseudo-inverse, Equation (61). When reorienting coordinates from the n 

wheels in the wheel frame Ŵ  to three orthogonal coordinates of the body frame B̂ , there 

is a unique solution.   

 
hB = BZ3

WhW

τ B = BZ3
Wτ W

  (86) 

The pseudo-inverse offers a single solution for translating the actuation from the 

body coordinates (3x1 vector) uniformly across n wheels (nx1 vector). The pseudo-

inverse is desirable because it is the minimum least squares (L2) solution, minimizing the 

sum of the squares of all of the wheels’ individual momenta/torque [15, p. 1609].   

 
hW = BZ3

W⎡⎣ ⎤⎦
+
hB

τ W = BZ3
W⎡⎣ ⎤⎦

+
τ B

  (87) 

Since the system is underdetermined, there are infinite possible nx1 wheel 

configurations that will satisfy the body coordinate solution, but the pseudo-inverse will 

give only one such configuration.  

1. Pseudo-Inverse Control Allocation 

Using the reaction wheel orientation matrix for a 4 wheel system mentioned in 

(60) and β = cos−1 1
3

⎛
⎝⎜

⎞
⎠⎟
rad = 54.74° , the resultant orientation matrix and pseudo-

inverse used in this example is 

 BZW = 1
3

B

2
0
1

0
2
1

− 2
0
1

0
− 2
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

W

  (88) 



 47 

 BZ3
W⎡⎣ ⎤⎦

+
= 3
4

W

2 0 1
0 2 1

− 2 0 1
0 − 2 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

  (89) 

To illustrate the implications of BZ3
W⎡⎣ ⎤⎦

+
, consider the following possible wheel 

momentum configuration where 1.0hmax  represents a scalar of the maximum possible 

momentum for a given wheel.   

 hpossible
W =

1
1

−1
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

hmax   (90) 

Using Equation (90) leads to the following possible momentum in the body 

frame.  

 hpossible
B = BZ3

Whpossible
W = BZ3

W

1
1

−1
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

W

hmax =
1.633
0

1.155

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

hmax   (91) 

Assume this possible hB  was commanded rather than derived. Now, the pseudo-

inverse would be required to derive the individual wheel momentum commands, hW . 

Applying the least-squares solution BZ3
W⎡⎣ ⎤⎦

+

 leads to a different solution than 

1 1 −1 1⎡⎣ ⎤⎦
T ). The pseudo-inverse solution is actually physically unachievable 

because the largest momentum command, 1.5hmax , is higher than the maximum hmax  for a 

given wheel: 
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 hpseudo−unacheivable
W = BZ3

W⎡⎣ ⎤⎦
+
hpossible
B = BZ3

W⎡⎣ ⎤⎦
+

1.633
0

1.155

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

hmax =

1.5
0.5

−0.5
0.5

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

W

hmax   (92) 

In order to implement the least squares control allocation, the proportionality of 

the solution must remain intact [24, pp. 880–883]. The wheel momentum vector in 

Equation (92) is therefore normalized by the highest element (greatest in magnitude). 

This allows appropriate control allocation to rotate the spacecraft predictably about the 

desired axis. 

 

hpseudo−lim
W =

BZ3
W⎡⎣ ⎤⎦

+
hdesired
B

max BZ3
W⎡⎣ ⎤⎦

+
hdesired
B( )

              =
hpseudo−unacheivable
W

max hpseudo−unacheivable
W( )

              =

1.000
0.333

−0.333
0.333

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

W

hmax

  (93) 

The normalized solution Equation (93) is far different than the wheel momentum 

configuration at the beginning of this example, Equation (90). Translating back to the 

body frame reveals that the pseudo-inverse limited solution in Equation (94) can only 

achieve 67% of the possible momentum shown in Equation (91). 

 hpseudo−lim
B = BZWhpseudo−lim

W = BZW

1.000
0.333

−0.333
0.333

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

W

hmax =
1.089
0

0.770

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

hmax   (94) 
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The previous example can be redone using  

 hpossible
W =

1
a

−a
a

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

hmax   (95) 

with a as anything from 0.333 to 1.0. The system returns the same limit at  

 hpseudo−lim
B =

1.089
0

0.770

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

hmax   (96) 

which is only 67% of the possible body momentum in this example. 

 hpossible
B =

1.633
0

1.155

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

hmax   (97) 

The same performance limitation results in a loss of torque per Equation (87). 

2. Performance Loss 

The momentum vector in the previous example corresponds to a minor vertex (see 

Figure 19).     

 hpossible
B =

1.633
0

1.155

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

hmax =
cβ
0
sβ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

2.0hmax   (98) 

The pseudo-inverse limited vector is 67% of hpossible
B  giving a magnitude of 

h = 1.33hmax . 

 hpseudo−lim
B =

1.089
0

0.770

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

hmax =
cβ
0
sβ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

1.33hmax = 0.67hpossible
B   (99) 
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Graphically, hpseudo−lim
B  would be well within the reaction wheel momentum 

envelope. Shown in Figure 21, the red shape represents the full reaction wheel 

momentum space. It is the physical limitation of the reaction wheel system utilizing the 

maximum momentum possible to rotate about any given axis. The black dot represents 

the original point (minor vertex) shown in Equation (98). The red dot represents the 

pseudo-inverse limited system shown in Equation (99). The blue/black lines represent all 

possible magnitudes that share the same eigenaxis as the minor vertex. The blue line 

specifically represents the set of all achievable configurations by the pseudo-inverse. The 

black line represents the set of all unachievable, yet still possible, configurations. 

 
Figure 21.  Reaction Wheel Momentum/Torque Space Showing Pseudo-Inverse Limit 

The same is true for all other minor vertices, as they are unachievable using the 

pseudo-inverse. On the other hand, the minimum points and the maximum vertices are all 

achievable, shown in Figures 22 to 23. 
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Figure 22.  Reaction Wheel Pseudo-Inverse Limited Space 

The representation shown in Figure 22 makes it clear that the pseudo-inverse is a 

mathematical limitation on the system performance and not a physical system limitation. 

Indeed, this is true because the pseudo-inverse minimizes the sum of the squares of the 

moment/torque in a given direction. The least squares solution discards some of the 

available moment capacity in favor of an L2 control allocation. In reality, the spacecraft 

has the ability to rotate faster (higher momentum) about many axes, but the pseudo-

inverse does not necessarily allow this. Going from wheel space to body space, there is 

only one mathematical answer. Going from body space to wheel space, there are an 

infinite number of potential arrangements. The pseudo-inverse only provides the least-

squares solution, a mathematically limited solution. 

Figure 23 shows the pseudo-inverse limited momentum space from Figure 22 

overlaid into the full reaction wheel space from Figure 19. This makes it clear how much 

volume is missing across the different orthogonal views. An interesting note is that the 



 52 

pseudo-inverse solution intersects all six of the maximum vertices and all twelve of the 

minimum points, but none of the eight minor vertices. 

 
Figure 23.  Reaction Wheel Pseudo-Inverse Limited Space – Orthogonal 

G. PSEUDO-INVERSE LARGEST INSCRIBED SPHERE 

As previously shown with the full reaction wheel space, the full momentum 

envelope can be further limited to an enclosed sphere (Figure 19). Similarly, the pseudo-

inverse limited space can be confined to a sphere to ensure a constant value of achievable 

momentum in all directions. The minimum pseudo-inverse envelope surfaces occur at 

1.333hmax . Therefore, the pseudo-inverse space can be confined to a sphere with a radius 

of 1.333hmax  (Figure 24). This will ensure that this momentum is available in all 

directions.   
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Figure 24.  Pseudo-Inverse Momentum Space with Largest Sphere 

Figure 25 shows a comparison of the reaction wheel momentum space under the 

various control limitations. Here it is obvious the huge loss of momentum space that 

occurs under the typical spherical simplification utilized in the design of a spacecraft 

attitude control system. Later chapters will be used to discuss methods, particularly the 

use of optimal control, to improve the usage of the available system capacity.  
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Figure 25.  Momentum Space Comparison 
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V. OPTIMAL REACTION WHEEL ATTITUDE CONTROL 

This chapter will be used to derive the time-optimal slew for a reaction wheel 

system. First, the time-optimal eigenaxis slew will be generated. This standard heritage 

maneuver is best only if the engineer wants the spacecraft to stay on the eigenaxis to 

minimize the overall rotation angle. The spacecraft often has more momentum and torque 

available to exploit, but it is necessary to deviate from an eigenaxis path in order to 

accomplish this. The remaining sections of the chapter will expand the linear derivation 

from Section A into the nonlinear reaction wheel and spacecraft dynamics developed in 

Chapters II and IV. DIDO, an optimal control solver [21], will be used to obtain the 

optimal control solution. An attitude control architecture will also be presented in order to 

implement the optimal solution. 

A. TIME-OPTIMAL EIGENAXIS REORIENTATION 

The time-optimal, rest-to-rest eigenaxis slew solution is fairly straightforward. 

Not all of the following steps are necessary to solve this problem, but all steps will be 

covered for completeness. The optimal control methodology is necessary to understand 

prior to Section B, where a much more complicated derivation is presented.   

1. Problem Formulation 

In general, figures of merit are used to determine how well the slew meets the 

requirements important to the engineers and/or customer. These are broken up into costs 

(stuff to minimize) and constraints (boundary conditions that must not be exceeded). The 

maneuver is defined as rest-to-rest with the initial and final angles predetermined.   

Initial time is zero and the final time is free (term to be optimized), if it is desired 

to design a rapid slew maneuver. 

 
t0 = t

0 = 0
t f = t

f   (100) 
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As shown in Chapter III, the spacecraft model can be simplified as a double 

integrator. In this case, the state variables and control are  

 
 

x(t) =
θ(t)
θ(t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

θ(t)
ω (t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (101) 

 u = u(t)[ ] = α (t)[ ]   (102) 

The state space representation of Equation (101) is shown as 

 
 

x = f x(t),u(t)( ) =
θ(t)
ω (t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

ω (t)
α (t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

ω (t)
u(t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ .

  (103) 

First and foremost, the solution must meet the boundary conditions. The purpose 

of slewing is to accurately point at a new target (end condition). If the spacecraft slews 

but does not get the desired end condition, then it may not be possible to perform the 

mission requirements. The final angle will be defined as the difference from start to 

finish. Therefore, the initial angle will be set as zero. Initial and final rates are zero 

because the maneuver is considered rest-to-rest. The boundary conditions are defined as 

follows. 

 

θ(t0 ) = θ0 = 0
ω (t0 ) =ω 0 = 0
θ(t f ) = θ f = θd

ω (t f ) =ω f = 0

  (104) 

These boundary conditions can be rewritten as 

 x(t0 ) = x
0 =

θ0
ω 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

0
⎡

⎣
⎢

⎤

⎦
⎥   (105) 

 x(t f ) = x
f =

θ f

ω f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

θd

0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (106) 
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A convention to be used to define the endpoint conditions e will be to set 

Equation (106) equal to zero.   

 e x(t f )( ) = θ f −θd

ω f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

0
0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (107) 

The Mayer cost E is a form of endpoint cost. Assuming the boundary conditions 

“must” be met, this is the measure of optimality that quantifies the solution in terms of 

the final state. Since this is a time-optimal slew, the endpoint cost is the final time. 

 E x(t f )( ) = t f   (108) 

The Lagrange cost F is a form of running cost. This measure quantifies the cost of 

the maneuver itself. A common form is the quadratic cost F = u2 (t)dt
t0

t f∫ , which 

represents the “energy” or efficiency of the system. Since the control u is directly related 

to torque, this cost can be used to minimize torque-related functions like power during a 

maneuver. For the simplified case of individual time-optimal slews, the Lagrange cost 

will not be used. The superscript (D.N.E.) will be used to show that the term is not only 

zero, but it does not exist for this problem. 

 F x(t),u(t)( )dt
t0

t f∫ = 0 D.N .E .( )   (109) 

The cost functional ℑ  can be composed of both Mayer and Lagrange costs. 

 
ℑ x(⋅),u(⋅),t f⎡⎣ ⎤⎦ = E x(t f )( ) + F x(t),u(t)( )dt

t0

t f∫
ℑ x(⋅),u(⋅),t f⎡⎣ ⎤⎦ = t f

  (110) 

Rewriting this problem in the format used by Ross [25, p. 43], we get  
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Given                x = θ
ω

⎡

⎣
⎢

⎤

⎦
⎥,u = u[ ]

Minimize         ℑ x(⋅),u(⋅),t f⎡⎣ ⎤⎦ = t f

Subject to                               x = ω
u

⎡

⎣
⎢

⎤

⎦
⎥

                                θ0,ω 0,t0( ) = 0,0,0( )
                            θ f −θd ,ω f( ) = 0,0( ) .

  (111) 

2. The Hamiltonian 

For every state, a costate will be defined with subscripts to match their respective 

states.   

 λ =
λ1
λ1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

λθ

λω

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (112) 

The control Hamiltonian is given by  

 H λ,x,u( ) = F(x,u)+ λ T f (x,u)   (113) 

 
H λ,x,u( ) = 0 D.N .E .( ) + λθ λω

⎡
⎣

⎤
⎦

ω
u

⎡

⎣
⎢

⎤

⎦
⎥

                = λθω + λωu
  (114) 

3. The Hamiltonian Minimization Condition 

The Hamiltonian Minimization Condition states that the Hamiltonian H must be 

minimized over the control u [26, p. 108]. This leads to the Euler Lagrange equation. 

 
             ∂H

∂u
= 0

∂
∂u

λθω + λωu( ) = λω = 0
  (115) 

Since u does not appear, Pontryagin’s Principle must be used. From [26, 

Algorithm 3.8.13], Pontryagin’s Principle states the following. 
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 ∂H
∂u

=
> 0, u = −umax
= 0, −umax < u < umax
< 0, u = umax

⎧

⎨
⎪

⎩
⎪

  (116) 

Applied to this problem, the switching function in Equation (116) becomes 

 λω =
> 0, u = −umax
= 0, −umax < u < umax
< 0, u = umax

⎧

⎨
⎪

⎩
⎪

.

  (117) 

By rearranging Equation (117) in terms of the costate to solve for the control, the 

rule in Equation (118) results. Since the value of the control does not matter when the 

costate λω = 0 , the control can be set to zero. This is not necessary, but it is acceptable 

since the use of any control during this state will not affect the optimal control problem. 

This is stated simply as an energy conservation technique. Thus, the control is given as: 

 u =
−umax
0
umax

for
λω > 0
λω = 0
λω < 0

⎧

⎨
⎪

⎩
⎪

.

  (118) 

Ultimately, Equation (118) states that the control must be at its positive or 

negative maxima. The function sgn will be defined as the sign of its independent variable. 

 

 

sgn i( ) =
1
0
−1

for

i( ) > 0
i( ) = 0
i( ) < 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

  (119) 

Equation (118) can now be written compactly as 

 u = −sgn(λω )umax   (120) 

Equation (120) matches the formulation by [25, Algorithm 3.36]. 

4. The Costate Dynamics and the Adjoint Equation 

From [25, Algorithm 2.2], the adjoint equation states 
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− λ(t) = ∂H

∂x
  (121) 

 

 

−
λθ

λω

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

∂H
∂θ
∂H
∂ω

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
0
λθ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (122) 

The differential costate equations shown in Equation (122) can be integrated to 

create equations for the costates in terms of unknown constants. 

 λ(t) =
λθ

λω

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

c1
−c1t + c2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (123) 

5. Transversality 

The endpoint Lagrangian is given by [25, Algorithm 2.9]. 

 E(x f ,t f ) = E x(t f )( ) +ν Te x(t f )( )   (124) 

 
E(x f ,t f ) = t f + νθ νω

⎡
⎣

⎤
⎦

θ f −θd

ω f

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= t f +νθ θ f −θd( ) +νω ω f( )
  (125) 

The terminal transversality conditions are given by [25, Algorithm 2.8]. 

 λ(t f ) =
∂E
∂x f

  (126) 

 λ(t f ) =

∂E
∂θ f

∂E
∂ω f

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
νθ

νω

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (127) 

 or more simply λ f = ν   (128) 
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Since the final conditions of the costates simply equal new unknown variables, 

nothing new is learned by analyzing the transversality condition. Since the final time is 

free, the Hamiltonian Value Condition is necessary. This states terminal conditions for 

the Hamiltonian [25, Algorithm 2.10]. 

 H t f( ) = − ∂E
∂t f

  (129) 

 H t f( ) = −1   (130) 

The Hamiltonian is minimized when the ∂H / ∂u = 0  and ∂2H / ∂u2 ≥ 0 . 

Equation (130) provides a fixed point for the terminal point of the Hamiltonian. Since 

∂H (t) / ∂u = 0 , thenH (t) = −1  for all time.  

6. Bang-Bang Control 

Ultimately, the primary lesson learned above is  

 u = −sgn(λω )umax   (131) 

 λω = −c1t + c2   (132) 

Equations (131) and (132) can be combined as 

 u = −sgn(−c1t + c2 )umax . (133) 

Since λω  is linear, it can only intersect λω = 0  once. This may or may not occur 

within the range 0,t f⎡⎣ ⎤⎦ , therefore it can be stated that at most, only one sign change 

(switch) occurs within (133).  [19, pp. 193–200] additionally confirms that only one sign 

change occurs for initial rest-to-rest maneuvers. For arbitrary initial or final conditions, it 

is possible for no switches to occur (e.g., high initial velocity with constant deceleration 

to slow down). Therefore, for the rest-to-rest maneuver in this example, the quickest 

method of rotation about this single eigenaxis would be to use bang-bang control where 

one switch occurs between 0,t f⎡⎣ ⎤⎦ . This means to use maximum torque available along 

that axis until half way there, then reverse torque in order to slow down to zero right at 
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the point in which the desired slew angle θd  is achieved. The resulting trajectory is 

shown in Figure 26.   

  
Figure 26.  Acceleration Limited Eigenaxis Slew 

Since spacecraft attitude reorientations may also be momentum-limited in 

addition to torque-limited, large angle maneuvers may look closer to that in Figure 29 

(heritage maneuver from Chapter III). Momentum is proportional to angular rate, 

therefore the trajectory is shown as rate-limited. The maneuver is initially torque-limited 

τmax (αmax )  until the maximum momentum hmax (ωmax )  is reached. During this 

momentum-limited section, the spacecraft coasts at ωmax , until it can decelerate at its 

maximum torque −τmax (−αmax ) . Figure 27 is the solution to the optimal control problem 

with an additional rate limit. 
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Figure 27.  Rate Limited Eigenaxis Slew 

B. OPTIMAL CONTROL EQUATIONS OF MOTION 

Since the input is already going to be determined offline per the shaped heritage 

maneuver, the time-optimal solution should instead be utilized. With theoretically 

unlimited computing power at the ground station, the optimal solution can be computed 

for every individual slew. The equations of motion for the spacecraft and reaction wheel 

system from Chapters II and IV will now be consolidated. Although the equations are 

listed in matrix form for simplicity, the number of dynamic equations reflects the number 

of independent equations that can be extracted from the equation set. 

1. Spacecraft Kinematics 

The spacecraft kinematics are repeated from Chapter II. Since the orbital motion 

is set to zero ( Nω O = 0 , see Chapter III), then Nω B = Oω B . This simplifies the dynamics 

slightly allowing the removal of three states. This change is reflected immediately in 

Equation (134). 

 

 

q123 =
1
2
q4

Nω B − Nω B × q123( )
q4 = − 1

2
Nω B( )T q123

 (134) 

where q123 = q1 q2 q3⎡
⎣

⎤
⎦
T

. 
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2. Reaction Wheel Dynamics 

The torques of the individual reaction wheels follow from Equation (71). 

  τ w
W = Jw Ω

W   (135) 

Equation (135) can be solved in terms of the reaction wheel acceleration. 

  
ΩW = Jw

−1τ w
W   (136) 

3. Spacecraft Dynamics 

The spacecraft dynamics were developed in Chapters II and IV.  

  τ req
N = Js/c

N ω B + Nω B × Js/c
Nω B   (137) 

 −τ req
N = bZ3

wτ w
W + Nω B × bZ3

wJwΩ
W   (138) 

Combining Equations (137) and (138) yields the following. 

  Js/c
N ω B + Nω B × Js/c

Nω B = − bZ3
wτ w

W − Nω B × bZ3
wJwΩ

W   (139) 

 
 
Js/c

N ω B = − bZ3
wτ w

W − Nω B × Js/c
Nω B + bZ3

wJwΩ
W( )   (140) 

Solving Equation (140) in terms of the spacecraft angular velocity rate yields 

 
 
N ω B = Js/c

−1 − bZ3
wτ w

W − Nω B × Js/c
Nω B + bZ3

wJwΩ
W( )( ) .

  (141) 

4. State and Control Variables 

The state vector now has 7+n states and the control vector has n states, where n 

refers to the number of reaction wheels in the array. 
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x =

q1
q2
q3
q4

Nω x
B

Nω y
B

Nω z
B

Ω1
W


Ωn

W

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  and 

 

u =
τ1
W


τ n
W

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (142) 

5. Actuator Constraints 

Torque and momentum limitations will be included in the optimal control 

problem, as these constraints represent the physical limitations of the attitude control 

system. 

 −τmax
W ≤ τ i

W ≤ τmax
W , i = 1,2,...,n   (143) 

 −Ωmax
W ≤ Ωi

W ≤ Ωmax
W , i = 1,2,...,n  (144) 

6. Initial and Final Conditions 

The spacecraft will be conducting rest-to-rest slews. This means initial and final 

quaternions are known. Initial and final spacecraft rotation rates are zero. For this 

analysis, initial and final reaction wheel rates will be considered zero. In reality, 

engineers operate the reaction wheel at some nominally non-zero value. This is because 

Ωi0
W = 0  can cause jitter in the presence of “stiction” (friction from static positions) [13, 

p. 5]. The initial and final states can be represented as follows. 

 
q10 ,q20 ,q30 ,q40 ,

Nω x0
B , Nω y0

B , Nω z0
B ,Ω10

W ,,Ωn0
W( ) = q1

0,q2
0,q3

0,q4
0,0,0,0,0,,0( )   (145) 

 
q1 f ,q2 f ,q3 f ,q4 f ,

Nω x f
B , Nω y f

B , Nω z f
B ,Ω1 f

W ,,Ωn f
W( ) = q1

f ,q2
f ,q3

f ,q4
f ,0,0,0,0,,0( )   (146) 
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7. Cost Function 

The objective is to minimize the overall maneuver time. Therefore, the cost 

function is  

 ℑ x(⋅),u(⋅),t f⎡⎣ ⎤⎦ = t f .
  (147) 

8. Optimal Control Problem 

By gathering Equations (134)  to (147), the optimal control problem can now be 

defined: 

 

Given             x = q1 q2 q3 q4
Nω x

B Nω x
B Nω x

B Ω1
W  Ωn

W⎡
⎣

⎤
⎦
T

                       u = τ1
W  τ n

W⎡
⎣

⎤
⎦
T

Minimize   ℑ x(⋅),u(⋅),t f⎡⎣ ⎤⎦ = t f

Subject to                      q123 =
1
2
q4

Nω B − Nω B × q123( )
                                       q4 = − 1

2
Nω B( )T q123

                                   N ω B = Js/c
−1 − bZ3

wτ w
W − Nω B × Js/c

Nω B + bZ3
wJwΩ

W( )( )
                                     ΩW = Jw

−1τ w
W

q10
,q20

,q30
,q40

, Nω x0

B , Nω y0

B , Nω z0

B ,Ω10

W ,,Ωn0

W( ) = q1
0,q2

0,q3
0,q4

0,0,0,0,0,,0( )
q1 f

,q2 f
,q3 f

,q4 f
, Nω x f

B , Nω y f
B , Nω z f

B ,Ω1 f
W ,,Ωn f

W( ) = q1
f ,q2

f ,q3
f ,q4

f ,0,0,0,0,,0( )
                                −τmax

W ≤ τ i
W ≤ τmax

W

                               −Ωmax
W ≤ Ωi

W ≤ Ωmax
W

  (148) 

C. SCALING THE PROBLEM 

The purpose of scaling is to generalize all states to within similar orders of 

magnitude. Without scaling, one state may take on large values 106( )  while others are 

comparatively small 10−6( ) . The relative difference would be is 10−12( ) , which causes 

numerical problems due to operating near machine epsilon. By simply multiplying each 
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state by the appropriate “scaling factor” their values can be made the same order of 

magnitude, and numerical issues successfully sidestepped. 

The common formulation for scaling units is done through “canonical units.”  

Canonical refers to a specific definition where, for example, a velocity unit (VU) is equal 

to the quotient of a distance unit (DU) and a time unit (TU). 

 VU = DU
TU

  (149) 

Within [21], “designer units” are chosen instead to keep the states and costates in 

relative orders of magnitude. Instead of looking at the costates, nor at the coupling 

between position and velocity, this thesis outlines a different kind of designer unit. They 

will be denoted by a superscript * (or state followed by “z” within any listed code). 

1. Designer Units 

As scaling factors, the following designer units are used to bring all variables 

close to the first order of magnitude.  

Wheel torque:   τ * = τ max  (maximum wheel torque for chosen RW) 

Time:   T * = 1s  (use real time) 

Quaternion:  No further scaling. Assumes  is sufficiently scaled 

S/C Spin Rate:  ω * = 3° / s = 0.0524 rad / s  (slightly faster than conventional rate) 

Wheel Rate:  Ω* =Ωmax  (maximum wheel spin rate for chosen RW) 

For example, the relationship between the torque τ  and the scaled torque τ  will 

be the proportionality constant τ * . 

 τ = τ τ *   (150) 

Therefore, the scaled torque would always operate in the range −1,1[ ] . 

 τ = τ
τ *

= τ
τmax

  (151) 

−1≤ q ≤1
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Scaling of constants within a canonical unit representation can be useful because 

many terms will cancel out leaving simpler equations to manipulate and code. If all 

scaling terms are directly coded into the software, scaling of constants does nothing. This 

is because the constant must be scaled down first, then scaled back up to its original value 

within the dynamic equation. In the case of designer units where many mismatched units 

are being manipulated, it is unlikely that convenient units will cancel leaving an elegant 

equation. Therefore, scaling is not required and not completed for constants. An example 

of designer unit scaling is as follows for the spacecraft dynamics. The full set of scaled 

equations is shown in Appendix A. 

 

N ω B = Js/c
−1 − bZ3

wτ w
W − Nω B × Js/c

Nω B + bZ3
wJwΩ

W( )( )
     ⇒ N ω B ω *

T *

⎛
⎝⎜

⎞
⎠⎟
= Js/c

−1
− bZ3

wτ w
W τ *( )− Nω B ω *( )×

Js/c
Nω B ω *( ) + bZ3

wJwΩ
W Ω*( )( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

     ⇒ N ω B = Js/c
−1 − bZ3

wτ w
W τ *T *

ω *

⎛
⎝⎜

⎞
⎠⎟
− Nω B T *( )× Js/c

Nω B ω *( ) + bZ3
wJwΩ

W Ω*( )( )⎛
⎝⎜

⎞
⎠⎟

  (152) 

2. Scaled Optimal Control Problem 

The scaled optimal control problem is 
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Given             x = q1 q2 q3 q4
Nω x

B Nω x
B Nω x

B Ω1
W  Ωn

W⎡
⎣

⎤
⎦
T

                       u = τ1
W  τ n

W⎡
⎣

⎤
⎦
T

Minimize   ℑ x(⋅),u(⋅), t f⎡⎣ ⎤⎦ = t f

Subject to  q123 =
1
2
q4

Nω B − Nω B × q123( ) T *ω *( )
                    q4 = − 1

2
Nω B( )T q123 T

*ω *( )

                N ω B = Js/c
−1 − bZ3

wτ w
W τ *T *

ω *

⎛
⎝⎜

⎞
⎠⎟
− Nω B T *( )× Js/c

Nω B ω *( ) + bZ3
wJwΩ

W Ω*( )( )⎛
⎝⎜

⎞
⎠⎟

                  ΩW = Jw
−1τ w

W τ *T *

Ω*

⎛
⎝⎜

⎞
⎠⎟

      q10
,q20

,q30
,q40

, Nω x0

B , Nω y0

B , Nω z0

B ,Ω10

W ,,Ωn0

W( ) = q1
0

q* , q2
0

q* , q3
0

q* , q4
0

q* ,0,0,0,0,,0
⎛
⎝⎜

⎞
⎠⎟

     q1 f
,q2 f

,q3 f
,q4 f

, Nω x f
B , Nω y f

B , Nω z f
B ,Ω1 f

W ,,Ωn f
W( ) = q1

f

q* , q2
f

q* , q3
f

q* , q4
f

q* ,0,0,0,0,,0
⎛
⎝⎜

⎞
⎠⎟

                                −1≤ τ i
W ≤1

                                −1≤ Ωi
W ≤1 .

  (153) 

D. DIDO IMPLEMENTATION 

DIDO is a MATLAB-based software package for solving optimal control 

problems [21]. A huge advantage of DIDO is that the optimal control problem from 

Equation (153) is the only necessary derivation. Since Pontryagin’s Principle, discussed 

in Section A, is automatically integrated by the DIDO software, further analysis is not 

required. But, Pontryagin’s Principle can be checked to verify the numerical solution. 

The code simply requires the optimal control problem to be inputted into a series of four 

functions run from a single m-file. 

1. Cost Function 

The cost function comes from Appendix A, Equation (275), implemented in 

Figure 28. 

 ℑ x(⋅),u(⋅), t f⎡⎣ ⎤⎦ = t f   (154) 
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Figure 28.  Cost Function Implemented as a DIDO Function 

2. Endpoint Function 

The endpoint function contains the boundary conditions from Equations (280) and 

(281), implemented in Figure 29. 

 

 q10
,q20

,q30
,q40

, Nω x0

B , Nω y0

B , Nω z0

B ,Ω10

W ,,Ωn0

W( ) = q1
0

q* , q2
0

q* , q3
0

q* , q4
0

q* ,0,0,0,0,,0
⎛
⎝⎜

⎞
⎠⎟

q1 f
,q2 f

,q3 f
,q4 f

, Nω x f
B , Nω y f

B , Nω z f
B ,Ω1 f

W ,,Ωn f
W( ) = q1

f

q* , q2
f

q* , q3
f

q* , q4
f

q* ,0,0,0,0,,0
⎛
⎝⎜

⎞
⎠⎟

  (155) 

 
Figure 29.  Endpoint Function Implemented as a DIDO Function 

3. Path Function 

The path is not necessary for this problem, so no path function script is needed.   

4. Dynamics Function 

The dynamic equations are from Equations (276) through (279). 
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 q123 =
1
2
q4

Nω B − Nω B × q123( ) T *ω *( )
q4 = − 1

2
Nω B( )T q123 T

*ω *( )
N ω B = Js/c

−1 − bZ3
wτ w

W τ *T *

ω *

⎛
⎝⎜

⎞
⎠⎟
− Nω B T *( )× Js/c

Nω B ω *( ) + bZ3
wJwΩ

W Ω*( )( )⎛
⎝⎜

⎞
⎠⎟

ΩW = Jw
−1τ w

W τ *T *

Ω*

⎛
⎝⎜

⎞
⎠⎟

  (156) 

Within the dynamics function shown in Figure 30, state scaling occurs at the point 

of state assignment and is then accounted for in the equations of motion.  
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Figure 30.  Dynamics Function Implemented as a DIDO Function 

5. Main Function 

With only a few dozen lines of code, the main m-file runs the four functions and 

DIDO. This is where the CONSTANTS are defined. Boundaries are set up for the states, 

controls, and endpoint conditions (see Figure 31).  
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Figure 31.  DIDO Bounds Implemented within a DIDO script 

DIDO is initially run with no guess and as little as 20 nodes to determine if a 

feasible solution will arise (see Figure 32).     

 
Figure 32.  DIDO No Guess (20 nodes) Implemented within a DIDO script 

The results are then seeded back into DIDO as initial guesses along the entire 

dynamic range using the following code. This time a much more refined set of 120 nodes 

is used (see Figure 35) 
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Figure 33.  DIDO Seeded Guess (120 nodes) Implemented within a DIDO script 

This completes all steps required to run DIDO under both the “no-guess” and 

“seeded guess” scenarios. The results from run 1 can be looked at as an initial estimate to 

put DIDO on track.  

E. OPTIMAL MANEUVER IMPLEMENTATION 

The optimal control solution is fundamentally open loop and the control solution 

is applied directly to the individual wheels (see Figure 34). Additionally, the optimal 

quaternion path is presented as a shaped angular trajectory at the forefront of the loop. 

Since body rates are known, the EQF can follow the rate trajectory instead of being 

regulated to zero angular velocity. When plant uncertainties or external disturbances 

exist, the instantaneous quaternion error generates work for the EQF Controller, applying 

any additional wheel torque as required.   With these changes, Figures 2 and 17 become 

Figures 34 and 35, respectively. 

 
Figure 34.  Architecture for Optimal Maneuver Implementation: Spacecraft Model 
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Figure 35.  Architecture for Optimal Maneuver Implementation: Reaction Wheel 

Subsystem 

Figure 36 shows the integration of the rate error into the eigenaxis quaternion 

feedback controller, a slight modification from Equation (28). 

 τ req = −k Js/c qe123 − c Js/c
Nω e

B + Nω B × Js/c
Nω B   (157) 

 
Figure 36.  Architecture for Optimal Maneuver Implementation: Eigenaxis Quaternion 

Feedback Controller 
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By modifying the control architectures as per Figures 34 to 36, the full reaction 

wheel array torque and momentum is available for use. If the state quaternions q feed 

back disturbances and/or uncertainty error, quaternion error is corrected by creating the 

quaternion error from the optimal quaternion trajectory. The EQF Controller then creates 

a torque requirement. Body rate error is propagated through both the EQF controller and 

wheel dynamics in the form of additional required torque. The total required torque τ req
B is 

then passed through the pseudo-inverse to sum with the optimal torque τ wopt
W .   

 τ w
W = τ wopt

W + BZ3
W⎡⎣ ⎤⎦

+
τ req
B   (158) 

The system will naturally require some correction torque τ req
B , because the 

spacecraft inertia and external forces (if present) cannot be modeled perfectly. This leads 

to the requirement for the pseudo-inverse to perform the allocation of the feedback 

torques. Since the pseudo-inverse uses the minimum least-squares solution for converting 

body torque into n wheel torques, the feedback provided follows a minimum energy 

control allocation.  

To accommodate the need for feedback, it is necessary to reduce the control 

authority of the optimal control solution. This is because if the optimal torque solution 

τ wopt
W is already utilizing the maximum system torque τmax

W , the system will not have the 

authority needed to make the feedback corrections. The available control authority for 

optimal control should be reduced inversely proportional to the knowledge of the system. 

If the system knowledge is high, then the control authority should be reduced only 

slightly. For instance, if the system knowledge is high, an optimal control authority of 

95% may be appropriate. If the system knowledge is low, an optimal control authority of 

75% may be appropriate. Within the optimal control problem formulation presented here, 

the adjustments would resemble that in Equation (159).   

 −0.95τmax
W ≤ τ i

W ≤ 0.95 τmax
W   (159) 
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F. EXAMPLE TIME-OPTIMAL MANEUVER 

In this section, the feasibility and optimality of a representative time-optimal 

example will be documented. As a representative generic spacecraft, the following 

figures will be used.  

 BZ3
W = 1

3

B

2
0
1

0
2
1

− 2
0
1

0
− 2
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

W

 (160) 

 Js/c =
2.54 0 0
0 2.54 0
0 0 2.54

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

kg ⋅m2   (161) 

 τ wimax = ±8.57mN ⋅m   (162) 

 Ωwimax
= ± 3000 rpm = ± 314.2 rad / s   (163) 

 Jw =

jw1 33 0 0 0

0 jw2 33 0 0

0 0 jw3 33 0

0 0 0 jw4 33

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

W

  (164) 

The designer units selected are: 

Wheel torque:   τ * = ±8.57mN ⋅m   

Time:   T * = 1sec   

Quaternion:  q* = 1  
 
(no further scaling)  

S/C Spin Rate:  ω * = 3deg/ s = 0.0524 rad / s   

Wheel Rate:  Ω* = 314.2 rad / s  
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A 120° rest-to-rest slew will be performed about the eigenaxis 

e = 2 / 3 0 1/ 3⎡
⎣

⎤
⎦ , from q0 = − 1/ 2 0 −1/ 2 1 / 2⎡

⎣
⎤
⎦
T

 to the origin 

q f = 0 0 0 1⎡⎣ ⎤⎦
T

. The boundary conditions are shown in Equation (165).   

 

q10 ,q20 ,q30 ,q40 ,
Nω x0

B , Nω y0
B , Nω z0

B ,Ω10
W ,Ω20

W ,Ω30
W ,Ω40

W( )
= − 1/ 2, 0 , −1/ 2, 1 / 2, 0, 0, 0, 0, 0, 0, 0( )

q1 f ,q2 f ,q3 f ,q4 f ,
Nω x f

B , Nω y f
B , Nω z f

B ,Ω1 f
W ,Ω2 f

W ,Ω3 f
W ,Ω4 f

W( )
= 0 , 0 , 0 , 1 , 0, 0, 0, 0, 0, 0, 0( )

  (165) 

1. Optimal Solution 

The time history of the control allocation determined by DIDO is shown in Figure 

37. For each of the 120 time nodes, DIDO determined the optimal control solution for 

each wheel. Linear interpolation was used to determine the feedforward control allocation 

that would be used for the simulation.   

 
Figure 37.  DIDO Control Solution (120 Nodes) 
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Figure 38 shows the time-optimal quaternion trajectory. The final node exists at 

q f = 0 0 0 1⎡⎣ ⎤⎦
T

 as expected in the boundary conditions.   

 

 
Figure 38.  Optimal Quaternion Trajectory (120 Nodes) 

Additionally, the final nodes for the angular rates all end at zero per the boundary 

conditions.   

2. Feasibility 

A feasible control solution is one that propagates through the system dynamics as 

expected and satisfies the boundary conditions. The feasibility of both solutions is 

checked by propagating DIDO’s control solution through the system dynamics. First, the 

state values at each of the individual time nodes must align with the propagation of the 

dynamics at those specific times. Second, the dynamics must propagate to the appropriate 

final conditions. If both of these have been satisfied, then it is determined that enough 

nodes have been used and the solution is indeed feasible.   
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The interpolated control signal (Figure 37) is propagated through the spacecraft 

dynamics, modeled within Simulink per Figures 34 to 36. For DIDO propagation, EQF is 

turned off. The DIDO torque signal is fed into the reaction wheel dynamics for open-loop 

propagation. Since the knowledge of the spacecraft inertia is considered perfect, the 

feedback portion will only affect the conventional slew, later used for comparison.  

States: Once propagation is complete for the full 120 nodes, the control and states 

for both runs and their respective control propagations can be plotted together. If the 

curves for each propagated state pass through its respective DIDO nodes, the DIDO-

produced control solution can be deemed feasible.   

Figures 39–41 show is a graphical comparison of the initial DIDO solution vs. the 

dynamically propagated solution from Simulink for all 11 states. By inspection, it appears 

that every single numerically calculated point is directly on top of its propagated 

trajectory. This shows that the DIDO solution is not only feasible, but also very accurate. 

 
Figure 39.  State Quaternion Propagation (120 Nodes) 
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Figure 40.  State Spacecraft Body Rate Propagation (120 Nodes) 

 
Figure 41.  State Reaction Wheel Rate Propagation (120 Nodes) 
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Scaled States and Costates: Another important check to determine the efficiency 

of code is the relative magnitude of the scaled states and costates. In Figures 42 and 43, 

the scaled states and costates (x ,λ )  are represented in the selected designer units prior to 

their rescaling back into SI units. All states and controls are on the same order of 

magnitude, which demonstrates good scaling. Only a 1 order of magnitude difference 

shows up in the costates, which are very sensitive to scaling. The relative comparison 

shows that reasonable scaling was achieved during problem formulation. If the costates 

were to differ from each other by 1–2 orders of magnitude, scaling of the time constant 

T* or turning the knobs on the state parameters could adjust this. Additionally, a key 

point to note is that the scaled states only differ from their costates by one to two orders 

of magnitude. A well-scaled problem will have them roughly the same order of 

magnitude [21, p. 33], therefore tweaking of the designer units could remedy this.  

 
Figure 42.  DIDO Scaled States 
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Figure 43.  Scaled Costates 

3. Optimality 

The first place to check for optimality is the Hamiltonian. To ensure the optimal 

solution is found, the Hamiltonian must be held constant with respect to time. 

Additionally, the final time is free, so the Hamiltonian Value Condition is necessary, 

refer back to Equations (124) through (130) from Section A. Similarly, it can be shown 

that  

 H t f( ) = − ∂E
∂t f

= −1 .  (166) 

Equation (166) reveals a key point; for all time-optimal cases, the Hamiltonian is 

held constant at –1. Figure 44 is a zoomed-in plot that shows that the time-history of the 

Hamiltonian on approximately −1± .007 , which is reasonable.  
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Figure 44.  Hamiltonian 

Although DIDO does not require inputs from the optimality analysis in Section A 

to run, this information can help further analyze the optimality of the solution. 

Pontryagin’s switching functions are easily derived. For the four control torques, the 

switching functions are as follows. 

 

S1 = λΩ1 / jw − 1/ 3λω 3 / js − 2 / 3λω1 / js
S2 = λΩ2 / jw − 1/ 3λω 3 / js − 2 / 3λω 2 / js
S3 = λΩ3 / jw − 1/ 3λω 3 / js − 2 / 3λω1 / js
S4 = λΩ4 / jw − 1/ 3λω 3 / js + 2 / 3λω 2 / js

  (167) 

where i W
i

HS
τ
∂=
∂

  (168) 

Per Pontryagin’s Principle (refer to Section A), these switching functions 

represent the slope of the Hamiltonian with respect to the control used.   This defines the 

control space by further determining what control effort should be used at any instant in 

time. If the slope is negative, i.e., Si < 0 , the maximum torque should be used (minimum 

torque for positive slope). When the slope = 0, the value of the control does not really 

affect the Hamiltonian. The following switching logic represents the optimal use of the 

controls. 

 If Si
< 0
= 0
> 0

⎧
⎨
⎪

⎩⎪
, then use 

τ i = τ max
τ min < τ i < τ max
τ i = τ min

  (169) 
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Figure 45 shows the dynamics of the reaction wheel assembly alongside the 

solution for the switching function at each of the 120 nodes. The torque responds very 

closely to the switching function logic in Equation (169), thereby further validating the 

optimality of the solution.  

 
Figure 45.  Torque and the Switching Functions 

G. EIGENAXIS SLEW COMPARISON 

For comparison purposes, the Eigenaxis Quaternion Feedback (EQF) Controller is 

used to perform a conventional eigenaxis slew maneuver via a shaped bang-coast-bang 

trajectory. EQF is governed by Equation (170), repeated from Chapter III, Equation (28). 

 τ req = −k J qe123 − c Jω + Nω B × Js/c
Nω B   (170) 

For this example, a 0.1 sec settling time was chosen. Recall, the step size is a 

function of the distance between discrete points used within the shaped quaternion 

trajectory.   Therefore, a small settling time can now be used. The damping ratio was 
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chosen as 0.9 so that it does not allow for much overshoot. Using these criteria, the gains 

k and c can be found. 

 

tsettle = 0.1sec
ζ = 0.9
ω n = 4 / (tsettleζ ) = 44.4
k =ω n

2 = 1.97E 3

c = 2ζω n = 80

  (171) 

A sanity check can be done by comparing the time-optimal slew against the 

classic EQF mentioned above. Figure 46 demonstrates the different paths taken by each 

slew. Notice that q2 changed for the optimal slew only. Acceleration also occurred faster 

for the optimal slew. A detailed analysis of how acceleration and momentum are utilized 

differently occurs within Chapter VII.   

 
Figure 46.  Optimal and Eigenaxis Comparison: Quaternions 

Figure 47 represents this comparison with respect to the Euler angles. The DIDO 

run took only 40.5 seconds, 21.8% faster than the 51.8 second EQF slew. It does not 
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matter which axis is used, the time-optimal slew will always be just as fast or faster than 

the eigenaxis slew. 

 
Figure 47.  Optimal and Eigenaxis Comparison: Euler Angles and Rates 

The optimal maneuver achieved the final boundary conditions much faster for two 

reasons. It was able to take advantage of off-eigenaxis motion, achieving much greater 

magnitudes in both torque and momentum. Figure 48 illustrates the additional torque 

(steeper slope) and momentum (maximum rate). The body rate of the eigenaxis slew 

confined by the pseudo-inverse was restricted to 3°/s. On the other hand, the optimal 

maneuver could reach momentum and torque outside the pseudo-inverse space, obtaining 

body rates of up to 4.24°/s, a 41.5% increase in maximum rate. 
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Figure 48.  Optimal and Eigenaxis Comparison: Body Rates 

Table 2 presents a maneuver-time comparison of a few more 120° slews. Each is 

moved from the initial quaternion back to the origin [0,0,0,1]. As the initial quaternion 

changed, eigenaxis slew rate increased. This is because the eigenaxis was limited only by 

the pseudo-inverse-limited octahedron, not the spherical surface (see Figure 24). As the 

eigenaxis approached a maximum vertex in run 2, the optimal slew only improved the 

time by 4.2%. Interestingly, the time-optimal maximum body rate was consistently 

between 4.0–4.3°/s, but this accounts for much off-eigenaxis movement. 

 
Table 2.   Optimal vs. Eigenaxis Comparison (120° slews) 

H. EFFECTIVE EIGENAXIS OF TIME-OPTIMAL MANEUVER – 
ANALYTICAL APPROACH 

It is important to introduce the concept of effective eigenaxis. Given any two 

quaternions, the optimal slew deviates off-eigenaxis, varying its rotation axis and rate 

time
(sec)

ωmax

(°/s)
time
(sec)

ωmax

(°/s)
["0.707,0,"0.5,"0.5] [)0.8165,)0.0000,)0.5774] 51.8 3.0 40.5 4.2 21.8%
["0.5,"0.5,"0.5,0.5] [)0.5774,)0.5774,)0.5774] 44.0 3.7 42.1 4.3 4.2%

["0.612,"0.433,"0.433,0.5] [)0.7071,)0.5000,)0.5000] 46.7 3.5 41.5 4.0 11.0%
[0.612,0,0.612,0.5] ["0.7071,)0.0000,"0.7071] 51.2 3.1 39.8 4.3 22.3%

Eigenaxis1Slew Optimal1Slew time1
improvementq0 Eigenaxis
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throughout the maneuver. The effective eigenaxis is defined as the axis of rotation for a 

minimum angle slew (original eigenaxis from q0 to qf), regardless of path actually 

traveled during the maneuver. For example: for Table 2, run 1, the effective eigenaxis of 

the optimal slew was [0.8165,0,0.5774]. The actual distance traveled by the time-optimal 

slew was 123° versus the minimum angle maneuver (120°) about the eigenaxis.    

Using this concept, it is possible to determine the relationship between the 

effective eigenaxis and the effective eigenaxis torque and slew rate about that effective 

eigenaxis, the motivation for the next two sections. This is necessary to form a general 

comparison between the two very different maneuvers. The crucial advantage of the 

optimal maneuver is that it can access all of the dodecahedron momentum space, 

including that outside of the pseudo-inverse octahedron (Figure 49).   This is because the 

optimal torque trajectories for each wheel are obtained as part of the solution to the 

optimal control problem. Hence the pseudo-inverse need not be employed (recall control 

law from Figure 34). This momentum envelope minimum begins at 1.633 hmax  at the 

center of the twelve flat faces, expanding to 2.309 hmax  at the maximum vertices (1.633

τmax  to 2.309τmax in torque space).   

 
Figure 49.  Time-Optimal Accessible Regions 
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It is difficult to compare a generic optimal maneuver against an eigenaxis slew, 

primarily because the precise shape of the optimal solution is not intuitive. The optimal 

maneuver is tailored to maximize performance of an individual maneuver. Thus, a 120° 

slew about one effective eigenaxis might be far different than a 120° slew about a 

different effective eigenaxis (see Table 2 for slew time comparison). Looking at Figure 

50, the 0 1 0⎡⎣ ⎤⎦  (or b̂2 ) axis yields a limit at 1.633 hmax  (τmax ), while the eigenaxis 

about 0 0 1⎡⎣ ⎤⎦  (or b̂3 ) yields 2.309 hmax  (τmax ). This means that the rotation about 

the b̂3  axis can potentially accelerate and traverse 41% faster than a rotation about b̂2 .   

Here, the effective eigenaxis momentum will be derived from the average 

eigenaxis momentum over 4π steradians. The first step will be to calculate the average 

amplitude of momentum or torque available about every possible eigenaxis. The average 

amplitude of a series of any set can be determined by the sum of the set divided by the 

number of entries in the set. Therefore, the average of magnitude of n (100, 1000, 1M) 

eigenaxis momentum vectors is the quotient of the sum and n.   

 havg =
hii=1

n∑
n

  (172) 

If havg  was placed back into 3D space along the same n eigenvectors, the shape 

would now be a sphere of radius havg . Consider each vector to have some volume 

associated with it. Since the total length of the sum is conserved, the sphere would have 

the same volume as the original dodecahedron.   

This approach will be followed in reverse in order to attain havg , the radius of the 

sphere. Using MATLAB’s convhull command, the volume of a shape is calculated as a 

subset of its three-dimensional points. Using this command, the volume of the 

dodecahedron is calculated as π4.632 hmax
3 . A simple spherical relationship yields the 

radius of the sphere. 

 havg =
3
4π
24.632hmax

33 = 1.805hmax   (173) 
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Now, the equivalent spherical radius of the reaction wheel momentum (or torque) 

envelope is 1.805. The shape is shown in Figure 50.   

 
hopt−sphere = 1.805hmax
τ opt−sphere = 1.805τmax

  (174) 

Since the sphere is not inscribed within the dodecahedron, it would appear that 

some torque/momentum described by the sphere is not available. This may not be the 

case though as the sphere simply represents the effective torque/momentum about the 

effective eigenaxis. Since the trajectory is allowed to deviate from the effective eigenaxis, 

the torque/momentum space at the vertices is exploited to raise the effective 

acceleration/rate limits outside the boundaries of the torque/momentum envelope.   

 
Figure 50.  Reaction Wheel Effective Eigenaxis Sphere for Time-Optimal Maneuvers 
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Consider the optimal trajectory using only eigenaxis slews, but has access to the 

entire momentum space. The average slew rate (or acceleration) derives directly from the 

newly-created optimal momentum sphere with values per (174). Since both torque and 

momentum limitations are assumed, the average time for any given slew angle can be 

predicted using the simple trapezoidal trajectory: bang-bang (from Figure 26) or bang-

coast-bang (from Figure 27), depending on whether the momentum limit is reached. The 

same spacecraft/wheel configuration from Section G will be used for comparison. Over 

the slew regime extending to 180°, the curve shown in Figure 51 is developed. 

 
Figure 51.  Reaction Wheel Effective Eigenaxis for Time-Optimal Maneuver – Analytical 

(js=25.4 kg-m2) 

The curve at the beginning indicates a torque limited region. For slew angles of 

30° or less, the reaction wheel array does not have the torque to reach its full momentum. 

Therefore, the maneuver is bang-bang. It will be in maximum torque mode (edge of the 

torque sphere, 0.1805Nm ), then reverse maximum torque to slow down without ever 

reaching the edge of the momentum envelope. For slews greater than 30°, the maximum 

momentum is reached and the system theoretically coasts at a constant rate (proportional 

to 1.805Nms ) for a portion of the maneuver. 
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In this section, the concept of effective eigenaxis was used as a baseline to 

compare the full spectrum of possible optimal maneuvers against the predictability of 

shaped eigenaxis slews. The relationship between effective eigenaxis torque/momentum 

for optimal maneuvers was developed. For the optimal maneuver, an effective 

momentum of 1.805hmax  and torque of 1.805τmax  can be used to represent the potential of 

the time-optimal maneuvers over 4π steradians. Additional comparisons will be carried 

out in Chapter VII.   

I. EFFECTIVE EIGENAXIS OF TIME-OPTIMAL MANEUVER – 
NUMERICAL VERIFICATION OF ANALYTICAL APPROACH 

The analytical approach from Section H must be validated.   To gather sample 

data, 100 optimal simulations were completed using the spacecraft/wheel configuration 

from Section G. The only dependent variable used was the beginning attitude. A random 

quaternion was generated for each trial, and the system slewed to the origin.   

 
q0 = 2 rand(4,1)− 0.5( )
q f = 0 0 0 1⎡⎣ ⎤⎦

T   (175) 

This allows a random sampling of slew angles and eigenaxes. The sample data is 

plotted alongside the analytical curve, shown in Figure 52.   
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Figure 52.  Reaction Wheel Effective Eigenaxis for Time-Optimal Maneuver – Numerical 

Approach with 1.807 τmax (js=25.4 kg-m2) 

The majority of the sample data lies above the curve, demonstrating that the 

approach taken in Section H might be too aggressive. The slope of the momentum-

limited region seems correct, but the intercept with the torque-limited region is too early. 

Therefore, the effective torque bound must be reduced. Several values for the effective 

torque are shown in Figure 53.  
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Figure 53.  Reaction Wheel Effective Eigenaxis for Time-Optimal Maneuver – Numerical 

Approach with [1.333,1.569,1.807] τmax (js=25.4 kg-m2) 

The sample data points in Figure 53 are seen to lie below the 1.333τmax  curve, 

demonstrating that the spherical system devised during the analytical approach made an 

achievable configuration. Since the actual optimal runs were faster than the curve fit, it 

shows that the spherical approach using the reduced value of τ eff
B  tends to give a slightly 

conservative estimate of the true performance of time-optimal solutions. This 

demonstrates that the maneuver times obtained by assuming a trapezoidal input via an 

effective eigenaxis slew is achievable via optimal control all the time. This allows the 

spherical shape with momentum/torque radii equal to 1.805/1.333 of the individual wheel 

momentum/torque maximum to be used in later in this thesis to facilitate comparison. 

This 35% increase in momentum over 4π steradians is significant.  
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hoptavg
B

hrwavg
B = 1.805hmax

1.333hmax
= 1.354   (176) 

In Chapter VII, it will additionally be shown how the optimal maneuver 

maximizes the use of the momentum/torque envelope to achieve better-than-eigenaxis 

performance.  

J. EFFECTIVE EIGENAXIS OF PSEUDO-INVERSE LIMITED TIME-
OPTIMAL MANEUVER 

If adding optimal torque signals directly to the individual wheels is out of the 

question, then the system can still be optimized for trajectory shaping by using a slight 

variation from the time-optimal logic used in Figures 34–36. The system must still 

employ the pseudo-inverse within the reaction wheel dynamics, but performance can be 

improved within this space. Figure 54 illustrates the pseudo-inverse limited optimal 

shaped trajectory being used in the spacecraft model. 

 
Figure 54.  Pseudo-Inverse Limited Time-Optimal Spacecraft Model 

The accessible gains are highlighted in Figure 55. Granted, the blue regions are 

accessible without the use of optimal control, but not about every eigenaxis. This section 

demonstrates how optimal control can be exploited for equal gain over 4π steradians.   
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Figure 55.  Pseudo-Inverse Limited Time-Optimal Accessible Regions 

In the same fashion as analytically extracted for the time-optimal in Sections H 

and I, the analytical and numerical approach can be completed for the pseudo-inverse 

limited time-optimal maneuvers. It can be shown that the pseudo-inverse limited time-

optimal space can be achieved by using maximum magnitudes of 1.577/1.333 of the 

individual wheel momentum/torque maximums. 

 
hpseopt−sphere = 1.577hmax
τ pseopt−sphere = 1.333 τmax

  (177) 
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Figure 56.  Pseudo-Inverse Limited Time-Optimal Momentum Sphere 

By shaping the trajectory using pseudo-optimal inputs rather than the standard 

trapezoidal input, 18% increases in speed and acceleration can be achieved. 

 
hpseoptavg
B

hrwavg
B = 1.577hmax

1.333hmax
= 1.183   (178) 

K. SUMMARY 

This chapter was used to develop and analyze the time-optimal slews. First, the 

time-optimal slew for the eigenaxis-restricted case was demonstrated as a bang-bang, or 

as a bang-coast-bang maneuver when momentum-limited. Next, the eigenaxis was 

abandoned and the time-optimal reorientation was developed and implemented in DIDO. 

Slew time improved over the trapezoidal input by up to 22% for 120° slews. This optimal 

control approach allowed the limitations of the pseudo-inverse to be avoided, increasing 
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the available momentum and torque envelope. Next, the effective eigenaxis concept was 

introduced, which allowed a comparison between the eigenaxis reorientation and the 

time-optimal slew. The effective eigenaxis was further developed to show how, on 

average, the available momentum and torque for the time-optimal case are 1.805hmax  and 

1.333 τmax  about the effective eigenaxis. For the pseudo-inverse-limited time-optimal 

case, they are 1.577hmax  and 1.333 τmax , respectively. 
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VI. CONTROL MOMENT GYROSCOPES 

Like reaction wheels, CMGs also have their physical limitations. They have 

maximum angular rates and accelerations that must be modeled. This ensures that only 

the maximum individual CMG torques can be applied, regardless of demanded torque. In 

order to appropriately apply limitations, a model of the CMGs must be created. This 

chapter is a focus on single gimbal control moment gyroscopes (SGCMGs). Dual gimbal 

and variable speed CMGs will not be discussed. The following introduction is simplistic 

regarding SGCMGs, but representative of the key interactions. The rest of this chapter 

will be used to derive these terms and show the interaction with the spacecraft body. 

At the center of a CMG is a large momentum wheel, driven by its own wheel 

motor at a nominally constant speed. The basic concept of a CMG is for a wheel to spin 

freely within a secondary gimbal frame. The gimbal frame is rotated within the body 

frame by a gimbal motor. The change in the direction of the wheel angular momentum as 

a result of gimbal motion causes a large torque orthogonal to the gimbal and angular 

momentum axes, i.e.  τ̂ = ̂δ × ĥ . Since a relatively small gimbal torque input can become 

a much larger output torque, this concept is known as “torque multiplication” [27, p. 1] or 

“torque amplification” [28, p. 160].    

A basic model of a CMG is shown in Figure 57. At the center of the CMG is a 

momentum wheel shown in the wheel frame Ŵ . The ŵ1  and ŵ2  axes are fixed to the 

wheel and rotate in the gimbal frame as a function of the constant wheel rate Ω  and time. 

It is important to note that the spin axis of the wheel frame is aligned with the gimbal 

frame, such that  

 GωW =Ωŵ3 =Ωĝ1  . (179) 

The wheel motor is attached to the gimbal frame and drives rotation of the wheel. 

The wheel is spun at a constant rate; therefore, the simple rotation of the wheel alone 

does not cause a torque transfer between the wheel and gimbal frames. 

  τ w
G = Jw Ωĝ3 = 0   (180) 
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Figure 57.  CMG Schematic 

Figure 57 shows the small gimbal momentum and torques as small red and green 

arrows, respectively. The large wheel momentum and large resultant orthogonal torque 

are shown in with larger arrows. All of these momentums and torques can be labeled 

relative to the gimbal frame. For simplicity, gyroscopic coupling terms are not shown on 

the diagram. 

 
hw = hwĝ1
τ w = τ wĝ2

  (181) 

 
hg = hgĝ3
τ g = τ gĝ3

  (182) 

Consider the spacecraft body frame aligned with the gimbal frame shown in 

Figure 57. Since the gimbal frame is allowed to rotate within the body frame, the 

following set of time derivatives with respect to the body frame are important to note. 

They will be used in the chapter’s derivations. 
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Bd
dt

ĝ1( ) = δ ĝ2
Bd
dt

ĝ2( ) = − δ ĝ1
Bd
dt

ĝ3( ) = 0

  (183) 

A. ORIENTATION 

The description of the orientation of a CMG will be carried out much like that of 

the orientation of reaction wheels in Chapter IV. To avoid redundancy, some portions of 

the explanation will be condensed.  

The fundamental formula for the angular momentum gimbal to body change of 

basis is given as 

 hi
B = BRGi⎡⎣ ⎤⎦hi

Gi
.  (184) 

The dyadic form of this projection onto the body frame is  

 hi
B = b̂ĝi

T⎡⎣ ⎤⎦hi
Gi =

B

b̂1 • ĝi1 b̂1 • ĝi2 b̂1 • ĝi3
b̂2 • ĝi1 b̂2 • ĝi2 b̂2 • ĝi3
b̂3 • ĝi1 b̂3 • ĝi2 b̂3 • ĝi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Gi

hi
Gi

.

  (185) 

The orientation will be placed in the B̂  frame, converting to the Ĝi  frame via 
GiRB , and then using the transpose BRGi  to convert back. In the example shown in Figure 

58a, the MED is placed directly on the B̂  xyz origin, rotating about the b̂1  axis and 

gimbaling around the b̂3  axis per Figure 58b. This produces an angular momentum hw
B  

directly in the b̂1  direction for the wheel.   
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Figure 58.  CMG Transformation 

The first two orientation transformations are exactly like those for the reaction 

wheel. A fundamental 3 rotation about the share b̂3 / ĝ3  axis is completed.   

 R3 α i( ) =
cosα i sinα i 0
−sinα i cosα i 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  (186) 

A 2 rotation is now completed about the ĝ2  axis (Figure 58c) to create the 

orientation skew angle β .  

 R2 β( ) =
cosβ 0 −sinβ
0 1 0
sinβ 0 cosβ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  (187) 
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The distinct difference between reaction wheels and CMGs occurs in the third, 

gimbal rotation. This is where CMGs derive most of their advantage. The final rotation is 

a 3 rotation by angle δ  about the new ĝ3  axis (Figure 58d). For reaction wheels, it is 

assumed that δ = 0 . 

 R3 δ i( ) =
cosδ i sinδ i 0
−sinδ i cosδ i 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  (188) 

The previous series of rotations can now be combined into a single transformation 

converting a vector from the body frame to the gimbal frame. 

 

GiRB = R3(δ i )R2 (β )R3(α i )

=
cδ i sδ i 0
−sδ i cδ i 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
3

cβ 0 −sβ
0 1 0
sβ 0 cβ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
2

cα i sα i 0
−sα i cα i 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
3

=

Gi
cα icβcδ i − sα isδ i cα isδ i + sα icβcδ i −sβcδ i

−sα icδ i − cα icβsδ i cα icδ i − sα icβsδ i sβsδ i

cα isβ sα isβ cβ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

  (189) 

It follows from Equation (45) that BRGi  is now the transpose of GiRB , which is 

equivalent to the reverse sequence via the negative angle of each rotation.   

 

BRGi = R3(−α i )R2 (−β )R3(−δ i ) =
GiRB⎡⎣ ⎤⎦

T

=

B
cα icβcδ i − sα isδ i −sα icδ i − cα icβsδ i cα isβ
cα isδ i + sα icβcδ i cα icδ i − sα icβsδ i sα isβ

−sβcδ i sβsδ i cβ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Gi

  (190) 

As an example, place the initial CMG at angle α = 0° . The resultant 

transformation from the Ĝ  frame to the B̂  frame is shown in Equation (191). 
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 BRcmg
G = R3(−0°)R2 (−β )R3(−δ ) =

B
cβcδ −cβsδ sβ
sδ cδ 0

−sβcδ sβsδ cβ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

G

  (191) 

An array of four CMGs is typically arranged in a square pyramid (similar to 

reaction wheels) in which each of the CMGs are placed  90  apart. The arrangement used 

here will be: α1 = 0°,α 2 = 90°,α 3 = 180°,α 4 = 270° . Figure 59 demonstrates this 

placement. This orientation matches that shown in [29, p. 3] given that the author’s initial 

gimbal angles were each set at 90° rather than δ i = 0°  as assumed in this thesis. 

 
Figure 59.  Body Frame to CMG Schematic 

Based on the wheel axis description mentioned above, the gimbal and wheel 

angular momenta in the gimbal frames can be written as  
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hgi
Gi =

0
0
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Gi

hgi  and hwi
Gi =

1
0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Gi

hwi
.

 (192) 

Transforming angular momentum from the Ĝ  frame to the B̂  frame using (184) 

and α = 0°  yields Equation (193). Note that the gimbal momentum in the body frame, 

Equation (193), is equal to the reaction wheel momentum in the body frame, Equation 

(53). This is because the orientation of the gimbal rotation axis in is equal to that of the 

reaction wheel spin axis, and both were subject to the same two initial rotations. 

 hgi
B =

sβ
0
cβ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

hgi  and hwi
B =

cβcδ i

sδ i

−sβcδ i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

B

hwi  (193) 

or in general form: 

 

 

hgi
B =

b̂1 i ĝi3
b̂2 i ĝi3
b̂3 i ĝi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

hgi
 

 and 

 

hwi
B =

b̂1 i ĝi1
b̂2 i ĝi1
b̂3 i ĝi1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

hwi
.

 (194) 

Recall the total angular momentum of the system is the sum of each of the MEDs 

in the body frame. Unlike the single momentum set for reaction wheels in Equation (69), 

CMGs derive their momentum from two different transformation sets. This allows the 

gimbal momentum and gimbal torques to be translated separately to through each of the n 

CMGs to the body frame. 

 

 

hgi
B

i=1

n

∑ =

B

b̂1 i ĝ13
b̂2 i ĝ13
b̂3 i ĝ13

b̂1 i ĝ23
b̂2 i ĝ23
b̂3 i ĝ23



b̂1 i ĝn3
b̂2 i ĝn3
b̂3 i ĝn3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G
hg1
hg2

hgn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G

  (195) 
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and 

 

hwi
B

i=1

n

∑ =

B

b̂1 i ĝ11
b̂2 i ĝ11
b̂3 i ĝ11

b̂1 i ĝ21
b̂2 i ĝ21
b̂3 i ĝ21



b̂1 i ĝn1
b̂2 i ĝn1
b̂3 i ĝn1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G
hw1
hw2

hwn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G

  (196) 

where  

 

BZ3
G =

B

b̂1 i ĝ13
b̂2 i ĝ13
b̂3 i ĝ13

b̂1 i ĝ23
b̂2 i ĝ23
b̂3 i ĝ23



b̂1 i ĝn3
b̂2 i ĝn3
b̂3 i ĝn3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G

  (197) 

and  

 

BZ1
G =

B

b̂1 i ĝ11
b̂2 i ĝ11
b̂3 i ĝ11

b̂1 i ĝ21
b̂2 i ĝ21
b̂3 i ĝ21



b̂1 i ĝn1
b̂2 i ĝn1
b̂3 i ĝn1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G

.

  (198) 

Now, Equations (195) and (196) can be rewritten as  

 hg
B = hgi

B

i=1

n

∑ = BZ3
Ghg

G   (199) 

 hw
B = hwi

B

i=1

n

∑ = BZ1
Ghw

G   (200) 

where  

 

hg
G =

hg1
hg2

hgn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G

 and 

 

hw
G =

hw1
hw2

hwn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G

.

 (201) 

For the square pyramid mentioned, the orientation matrices is shown in Equation 

(60) for CMGs. 
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 BZ3
G ==

B

sβ
0
cβ

0
sβ
cβ

−sβ
0
cβ

0
−sβ
cβ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

G

  (202) 

 BZ1
G ==

B

cβcδ i

sδ i

−sβcδ i

−sδ i

cβcδ i

−sβcδ i

−cβcδ i

−sδ i

−sβcδ i

sδ i

−cβcδ i

−sβcδ i

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

G

  (203) 

B. MODELING CMG ORIENTATION MATRICES 

These CMG orientation matrices can be created within Simulink. Figure 60 

demonstrates how Equation (190) is implemented. Since α i  and β  are fixed for the 

CMG, their respective rotation matrices will be held constant. The CMG transformation 

matrix BRGi  is only state dependent upon δ i . The column selectors simply extract the 

first, second, and third columns individually. 

 
Figure 60.  CMG ith Orientation Matrix Column Model 

Additionally, Figure 61 illustrates how the R3  and R2  matrices can be created for 

a generic angle.  
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Figure 61.  Rotation Matrix Model 

Figure 62 fully creates all three orientation matrices.  BZGi  from Figure 60 is 

represented four times, once for each CMG. The individual columns are independently 

combined to create the appropriate 3x4 orientation matrices BZG . 
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Figure 62.  CMG Orientation Matrix Model 

C. DIFFERENTIAL EQUATIONS OF MOTION 

The momentum of a CMG can be defined as the sum of the wheel angular 

momentum and the gimbal angular acceleration.   

 HCMGi
= Hwi

N + Hgi
N   (204) 

Each the wheel and gimbal can be independently modeled. 

 

Hwi
= Jwi

Nω i
Wi

      = Jwi
Nω i

B + Bω i
Gi + Giω i

Wi( )
      = Jwi

Nω i
B + Jwi

Bω i
Gi + Jwi

Giω i
Wi

  (205) 
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Hgi
= Jgi

Nω i
Gi

     = Jgi
Nω i

B + Bω i
Gi( )

     = Jgi
Nω i

B + Jgi
Bω i

Gi

  (206) 

The wheel and gimbal inertias were combined into the spacecraft inertia within 

Equation (6). Likewise, when these body-rotating inertias are subtracted from (204), only 

the components rotating relative to the body remain. 

 
hCMGi = HCMGi

− Jwi + Jgi( ) Nω i
B

= Jwi
Bω i

Gi + Jwi
Giω i

Wi( ) + Jgi
Bω i

Gi( )   (207) 

Next, the gimbal and wheel momenta will be analyzed separately.
 

1. Gimbal Momentum and Torque 

a. CMG Gimbal Momentum – Single Gimbal 

The gimbal momentum is shown first in matrix form. 

 

 

hgi
Gi = Jgi

Bω i
Gi =

jgi11 0 0

0 jgi22 0

0 0 jgi33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Gi

0
0
δ i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Gi

=
0
0

Jgi33
δ i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Gi

  (208) 

Shown in dyadic form: 

 

 

hgi
Gi = jgi11ĝi1ĝi1 + jgi22 ĝi2ĝi2 + jgi33ĝi3ĝi3( )• δ i ĝi3( )
= jgi33

δ i ĝi3 ĝi3 i ĝi3( )
= jgi33

δ i ĝi3

 . (209) 

Change of basis to the body frame:  

 

 

hgi
B = jgi33

δ i ĝi3 i b̂1b̂1 + b̂2b̂2 + b̂3b̂3( )
= jgi33

δ i ĝi3 i b̂1( )b̂1 + jgi33 δ i ĝi3 i b̂2( )b̂2 + jgi33 δ i ĝi3 i b̂3( )b̂3
 . (210) 

The resultant rotation matrix is shown as 
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hgi
B =

B

b̂1 i ĝi1 b̂1 i ĝi2 b̂1 i ĝi3
b̂2 i ĝi1 b̂2 i ĝi2 b̂2 i ĝi3
b̂3 i ĝi1 b̂3 i ĝi2 b̂3 i ĝi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Gi

0
0

jgi33
δ i

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Gi

=

b̂1 i ĝi3
b̂2 i ĝi3
b̂3 i ĝi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

jgi33
δ i

 . (211) 

b. CMG Gimbal Momentum – Gimbal Array 

Similar to reaction wheels, the resultant orientation matrix can be created 

using the components from the 3rd column of the gimbal frame rotation matrix.  

 

 

hg
B =

B

b̂1 i ĝi3
b̂2 i ĝi3
b̂3 i ĝi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G

( jgi11
δ )G

i=1

n

∑

=

B

b̂1 i ĝ13
b̂2 i ĝ13
b̂3 i ĝ13

b̂1 i ĝ23
b̂2 i ĝ23
b̂3 i ĝ23



b̂1 i ĝn3
b̂2 i ĝn3
b̂3 i ĝn3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G
jg1 11
δ1

jg2 11
δ 2


jgn 11
δ n

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

G   (212) 

  hg
B = BZ3

Ghg
G = BZ3

GJg δ g
G  (213) 

where  

 

hg
G = Jg δ

G =

jg1 33 0 0 0

0 jg2 33 0 0

0 0  0
0 0 0 jgn 33

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G
δ1
δ 2

δ n

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G

  (214) 
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c. CMG Gimbal Torque 

The torque of the gimbal can now be determined with respect to the body 

frame. Since this is simply the gimbal axis, the orientation is fixed and  Z = 0 . The inertia 

is assumed not to change relative to the gimbal axis.  

 

 

τ g
B =

Bd
dt
hg
B( ) =

Bd
dt

BZ3
GJg δ g

G( )
= B Z3

GJg δ g
G + BZ3

G Jg δ g
G + BZ3

GJg δ g
G

  (215) 

  τ g
B = BZ3

GJg δ g
G   (216) 

In dyadic form, a single CMG’s gimbal torque can be found using the 

derivative of Equation (210). 

 

 

Bd
dt
hgi
G( ) = jgi33

δ i ĝi3 i b̂1( )b̂1 + jgi33 δ i ĝi3 i b̂2( )b̂2 + jgi33 δ i ĝi3 i b̂3( )b̂3
+ jgi33

δ i ĝi3 i b̂1( )b̂1 + jgi33 δ i ĝi3 i b̂2( )b̂2 + jgi33 δ i ĝi3 i b̂3( )b̂3
+ jgi33

δ i
̂gi3 i b̂1( )b̂1 + jgi33 δ i

̂gi3 i b̂2( )b̂2 + jgi33 δ i
̂gi3 i b̂3( )b̂3

  (217) 

The inertia of the gimbal is not changing with respect to the gimbal frame. 

Also, the orientation of the 3 axis of gimbal frame is not moving with respect to the body 

frame as determined in Equation (183). 

 
 
jgi33 = 0   and  

̂gi3 = 0.  (218) 

Equation (217) now becomes  

 
 

Bd
dt
hgi
G( ) = jgi33

δ i ĝi3 i b̂1( )b̂1 + jgi33 δ i ĝi3 i b̂2( )b̂2 + jgi33 δ i ĝi3 i b̂3( )b̂33  . (219) 

 

 

Bd
dt
hgi
B( ) =

jgi33
δ i b̂1 i ĝi3( )

jgi33
δ i b̂2 i ĝi3( )

jgi33
δ i b̂3 i ĝi3( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

=

b̂1 i ĝi3
b̂2 i ĝi3
b̂3 i ĝi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

jgi33
δ i   (220) 
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2. Wheel Momentum and Torque 

a. CMG Wheel Momentum – Single Wheel 

The CMG wheel momentum is shown first in matrix form. 

 

 

hwi
Gi = Jwi

Bω i
Gi + Jwi

Giω i
Wi

=

jwi 11
0 0

0 jwi 22
0

0 0 jwi 33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Gi

0
0
δ i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Gi

+

jwi 11
0 0

0 jwi 22
0

0 0 jwi 33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Gi

Ωi

0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Gi

      =

jwi 11
Ωi

0
Jwi 33

δ i

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Gi

  (221) 

An equivalent derivation is shown in dyadic form. 

 

 

hwi
Gi = jwi 11 ĝi1 ĝi1 + jwi 22 ĝi2 ĝi2 + jwi 33 ĝi3 ĝi3( )• Ωi ĝi1 +

δ i ĝi3( )
= jwi 11Ωi ĝi1 ĝi1 i ĝi1( ) + jwi 33 δ i ĝi3 ĝi3 i ĝi3( )
= jwi 11Ωi ĝi1 + jwi 33

δ i ĝi3

  (222) 

Change of basis to the body frame:  

 

 

hwi
B = jwi 11Ωi ĝi1 + jwi 33

δ i ĝi3( ) i b̂1b̂1 + b̂2b̂2 + b̂3b̂3( )
= jwi 11Ωi ĝi1 i b̂1( )b̂1 + jwi 11Ωi ĝi1 i b̂2( )b̂2 + jwi 11Ωi ĝi1 i b̂3( )b̂3
+ jwi 33

δ i ĝi3 i b̂1( )b̂1 + jwi 33 δ i ĝi3 i b̂2( )b̂2 + jwi 33 δ i ĝi3 i b̂3( )b̂3
  (223) 

The resultant rotation matrix is shown as 
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hwi
B =

B

b̂1 i ĝi1 b̂1 i ĝi2 b̂1 i ĝi3
b̂2 i ĝi1 b̂2 i ĝi2 b̂2 i ĝi3
b̂3 i ĝi1 b̂3 i ĝi2 b̂3 i ĝi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Gi
jwi 11Ωi

0

jwi 33
δ i

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Gi

=

b̂1 i ĝi1( ) jwi 11Ωi + b̂1 i ĝi3( ) jwi 33 δ i

b̂2 i ĝi1( ) jwi 11Ωi + b̂2 i ĝi3( ) jwi 33 δ i

b̂3 i ĝi1( ) jwi 11Ωi + b̂3 i ĝi3( ) jwi 33 δ i

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

.

  (224) 

 

 

hwi
B =

b̂1 i ĝi1
b̂2 i ĝi1
b̂3 i ĝi1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

jwi 11Ωi +

b̂1 i ĝi3
b̂2 i ĝi3
b̂3 i ĝi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

jwi 33
δ i   (225) 

b. CMG Wheel Momentum – Wheel Array 

The resultant orientation matrix can be created using the components from 

the 1st and 3rd columns of the gimbal frame rotation matrix.  

 

 

hw
B =

b̂1 i ĝi1
b̂2 i ĝi1
b̂3 i ĝi1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

jwi 11Ωi +

b̂1 i ĝi3
b̂2 i ĝi3
b̂3 i ĝi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

jwi 33
δ i

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

i=1

n

∑

=

B

b̂1 i ĝ11
b̂2 i ĝ11
b̂3 i ĝ11

b̂1 i ĝ21
b̂2 i ĝ21
b̂3 i ĝ21



b̂1 i ĝn1
b̂2 i ĝn1
b̂3 i ĝn1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G
jw111Ω1

jw2 11Ω2


jwn 11Ωn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G

+

B

b̂1 i ĝ13
b̂2 i ĝ13
b̂3 i ĝ13

b̂1 i ĝ23
b̂2 i ĝ23
b̂3 i ĝ23



b̂1 i ĝn3
b̂2 i ĝn3
b̂3 i ĝn3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

G jw1 33
δ i

jw2 33
δ i


jwn 33
δ i

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

G

  (226) 
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  hw
B = BZ3

GJw δ g
G + BZ1

GJwΩg
G  (227) 

c. CMG Wheel Torque – Wheel Array 

The torque of the gimbal can now be determined with respect to the body 

frame. Since this is simply the gimbal axis, the orientation is fixed and  
B Z3

G = 0 . The 

inertia is assumed not to change relative to the gimbal axis. Also, the wheel is kept at a 

nominally constant speed. 

 

 

τ w
B =

Bd
dt
hw
B( ) =

Bd
dt

BZ1
GJw δ g

G + BZ3
GJwΩg

G( )
= B Z3

GJw δ g
G + BZ3

G Jw δ g
G + BZ3

GJw δ g
G

+ B Z1
GJwΩg

G + BZ1
G JwΩg

G + BZ1
GJw Ωg

G

  (228) 

  τ w
B = BZ3

GJw δ g
G + B Z1

GJwΩg
G   (229) 

Using partial differentiation of the second term within Equation (229), the 

following is obtained.  

 

 

B Z1
GJwΩg

G = ∂δ
∂δ

d
dt

BZ1
G( )JwΩg

G

= dδ
dt

∂
∂δ

BZ1
G( )JwΩg

G

= ∂
∂δ

BZ1
G( ) δ JwΩg

G

  (230) 

 Therefore, 
 
B Z1

G = ∂
∂δ

BZ1
G( ) δ   (231) 

where ∂
∂δ

BZ1
G( )  can be interpreted as a CMG Jacobian matrix. 

 

 

B ZGi =

B
cα icβcδ i − sα isδ i −sα icδ i − cα icβsδ i cα isβ
cα isδ i + sα icβcδ i cα icδ i − sα icβsδ i sα isβ

−sβcδ i sβsδ i cβi

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Gi

  (232) 
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By inspection of the transformation matrix, the partial derivative of the 

first column is equal to the second column.    

 ∂
∂δ i

BZ1
Gi( ) = BZ2

Gi   (233) 

Similarly, this is captured in the dynamic orientation matrix [6, pp. 464–

467], where A is introduced as a steering logic matrix. 

  
hi
B = A δhi

G  where A = ∂hB

∂δ
  (234) 

Upon close inspection, A matrix is equivalent to the second column of the 

Z matrix utilized within this thesis.   

 A = BZ2
G   (235) 

An alternative proof follows using dyadics.  

 

 

B Z1i
GJwiΩgi

Gi =

b̂1 i ̂gi1
b̂2 i ̂gi1
b̂3 i ̂gi1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

jwi 11Ωi   (236) 

Using  
̂g1 = δ ĝ2  from Equation (183), Equation (236) becomes 

 

 

B Z1i
GJwiΩgi

Gi =

b̂1 i ĝi2
b̂2 i ĝi2
b̂3 i ĝi2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

jwi 11
Ωi
δ i

                 = BZ2i
GJwiΩgi

Gi δ i

 . (237) 

In summary, all variations are equivalent 

 

 

B Z1
GJwΩg

G = BZ2
GJwΩg

G δ = AJwΩg
G δ = ∂

∂δ
BZ1

G( )JwΩg
G δ

B Z1
G = BZ2

G δ = A δ = ∂
∂δ

BZ1
G( ) δ

  (238) 
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The total wheel torque from Equation (229) now becomes 

  τ w
B = BZ3

GJw δ g
G + BZ2

GJwΩg
G δ   (239) 

Assuming like-sized wheels such that hw = jw111Ω1 = jw2 11Ω2 = jwn 11Ωn  

becomes a scalar term, the equation can be simplified into  

  τ w
B = jw11

BZ3
G δ g

G + jw11Ωg
G BZ2

G δ   (240) 

Equation (240) shows the final torque equation for the wheels of a CMG 

array. The equation is dominated by the second term [29]. The first term is dependent 

upon gimbal accelerations, which are generally slow [27]. The second term is dependent 

upon a slow gimbal angular velocity, but it is amplified significantly by the very high 

wheel rate. This is the “torque amplification” that the literature suggests [27, p. 1]  

[28, p. 160].  

In dyadic form, a single CMG’s wheel torque can be found using the time 

derivative of Equation (223). 

 

 

Bd
dt
hwi
B( ) = jwi11Ωi ĝi1 i b̂1( )b̂1 + jwi11Ωi ĝi1 i b̂1( )b̂1 + jwi11Ωi ĝi1 i b̂1( )b̂1

+ jwi11 Ωi ĝi1 i b̂2( )b̂2 + jwi11 Ωi ĝi1 i b̂2( )b̂2 + jwi11 Ωi ĝi1 i b̂2( )b̂2
+ jwi11Ωi

̂gi1 i b̂3( )b̂3 + jwi11Ωi
̂gi1 i b̂3( )b̂3 + jwi11Ωi

̂gi1 i b̂3( )b̂3
+ jwi33

δ i ĝi3 i b̂1( )b̂1 + jwi33 δ i ĝi3 i b̂1( )b̂1 + jwi33 δ i ĝi3 i b̂1( )b̂1
+ jwi33

δ i ĝi3 i b̂2( )b̂2 + jwi33 δ i ĝi3 i b̂2( )b̂2 + jwi33 δ i ĝi3 i b̂2( )b̂2
+ jwi33

δ i
̂gi3 i b̂3( )b̂3 + jwi33 δ i

̂gi3 i b̂3( )b̂3 + jwi33 δ i
̂gi3 i b̂3( )b̂3

  (241) 

The inertia of the wheel is not changing with respect to the gimbal frame. 

Also, the orientation of the 3 axis of gimbal frame is not moving with respect to the body 

frame as determined in Equation (183). The wheel speed is assumed constant. 

  
jwi11 = 0 ,  

jwi33 = 0 ,  
̂gi1 = δ i

̂gi2 ,  
̂gi3 = 0 ,  

Ωi = 0  (242) 

Equation (241) now becomes  
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Bd
dt
hwi
B( ) = jwi11Ωi

δ i ĝi2 i b̂3( )b̂3 + jwi11Ωi
δ i ĝi2 i b̂3( )b̂3 + jwi11Ωi

δ i ĝi2 i b̂3( )b̂3
+ jwi33

δ i ĝi3 i b̂2( )b̂2 + jwi33 δ i ĝi3 i b̂2( )b̂2 + jwi33 δ i ĝi3 i b̂2( )b̂2
  (243) 

 

 

Bd
dt
hwi
B( ) =

b̂1 i ĝi2
b̂2 i ĝi2
b̂3 i ĝi2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

jwi 33Ωi
δ i +

b̂1 i ĝi3
b̂2 i ĝi3
b̂3 i ĝi3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

B

jgi 33
δ i  . (244) 

The first term again validates the claim made in Equation (237). 

3. Total Momentum and Torque 

The combined CMG gimbal and wheel momentum and torque are now 

 

 

hCMG
B = hg

B + hw
B

= BZ3
GJg δ g

G( ) + BZ3
GJw δ g

G + BZ1
GJwΩg

G( )
= BZ3

G jg33 + jw33( ) δ g
G + BZ1

G jw11Ωg
G

= jg33 + jw33( ) BZ3G δ g
G + jw11

BZ1
GΩg

G

  (245) 

 

 

τ CMG
B = τ g

B + τ w
B

= BZ3
G jg33
δ g
G( ) + BZ3

G jw33
δ g
G + BZ2

G jw11Ωg
G δ( )

= BZ3
G jg33 + jw33( ) δ g

G + BZ2
G jw11Ωg

G( ) δ
= jg33 + jw33( ) BZ3G δ g

G + jw11Ωg
G( ) BZ2G δ

 . (246) 

By Euler’s transport theorem, the inertial derivative is  

 

 

N d hCMG
N( )

dt
=

Bd hCMG
B( )

dt
+ Nω B × hCMG

B

hCMG
N = hCMG

B + Nω B × hCMG
B

 . (247) 

Equation (247) can be rewritten by substituting the angular momentum terms  

 

 

hg
N = jg33 + jw33( ) BZ3G δ g

G + jw11Ωg
G( ) BZ2G δ

+ Nω G × jg33 + jw33( ) BZ3G δ g
G + jw11

BZ3
G δ g

G( )  . (248) 
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Like reaction wheels, CMGs are subject to the same pseudo-inverse law. Much 

like the pseudo-inverse of the reaction wheel orientation matrix, BZ2
G  (or A) can be 

inverted using the same method. Here  will be used to map the three body axes back to 

n CMGs.  

 

 

−τ req
N = jg33 + jw33( ) GZ3G δ g

G + jw11Ωg
G( ) BZ2G δ

+ Nω G × jg33 + jw33( ) GZ3G δ g
G + jw11

BZ3
G δ g

G( )   (249) 

Although Equation (249) shows the full dynamics, the gyroscopic coupling of the 

body motion with the gimbal rate can be assumed as very small [29]. Additionally the 

gimbal acceleration can be assumed small [29]. Therefore, Equation (249) can be reduced 

to Equation (250) and rearranged per Equation (251) using the pseudo-inverse. 

 

 

−τ req
N = jw11Ωg

G( ) BZ2G δ
= BZ2

Ghw
G δ

= BZ2
Gτ w

G

  (250) 

 

 

δ g
G = jw11Ωg

G( )−1 BZ2
G⎡⎣ ⎤⎦

+
−τ req

N( )
= hw

G( )−1 BZ2
G⎡⎣ ⎤⎦

+
−τ req

N( )
= hw

G( )−1 τ w
G( )

  (251) 

This is the same steering logic proposed in [6, Algorithm 7.147]. Therefore, the 

assumptions above were taken as well. 

D. MODELING CMGS 

In order to apply the physical actuator limitations of the CMG as part of the 

simulation model, the torque required of the assembly must be broken down, individual 

gimbal and wheel limit saturations applied, and then the torque of the CMG assembly 

rebuilt. Within Figure 63, (251) is used to break down the torque required and allocate it 

across the four wheels. The orientation matrix Z block consists of Figures 60–62. 

Z+
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Figure 63.  CMG Model 

This CMG model can be further expanded to include null motion in the presence 

of near-singular BZ2
G  conditions. Additionally, the components of Equation (249) can be 

modeled, but Equation (251) is modeled here for simplicity.   

E. CMG MOMENTUM SPACE 

The boundary created by the maximum momentum in any given direction for a 

particular CMG configuration is much more difficult to define than that of a reaction 

wheel configuration. The momentum space is no longer a three-dimensional geometric 

envelope with all interior points possible. The physical limitation is still the vector sum of 

the maximum capacitates of the individual CMGs, where momentum saturation occurs. 

Unlike reaction wheels, the surface is not a polyhedron. Instead, the CMG momentum 

envelope is contains singular cavities that pass through the center from one edge of the 

momentum space to the other.  

Like the reaction wheel case, maximum momentum space for an evenly spaced 

Δα = 90( )  four-CMG array is when β = 54.73°  [30, p. 866]. The resulting surface is 

shown in Figure 64. Since the gimbal axis ĝ3i  and the wheel angular momentum ĝ1i  are 

always perpendicular, a reduced amount of wheel momentum is available on the surface 
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of the momentum envelope, which is set within the body frame

 
ĝi3 × ĥcmgA

B = 1  or ĝi1 i ĥcmgA
B = ĝi2 i ĥcmgA

B = 0( ) . These regions are identified by white 

cavities in Figure 64, in which 2n  cavities exist [28, p. 161]. The identification of 

singular surfaces will be discussed in Section E. 

 
Figure 64.  Momentum Space of a 4 CMG System Given β=54.73°  

The shape within Figure 64 is unique to this four-CMG system. The shape alone 

reveals configurations of maximum momentum. The momentum peaks help identify the 

best possible axes to rotate about. These maximums occur at hmax
B = 3.266hmax , revealing 

that when using CMGs in comparison with similarly sized reaction wheels, 40% more 

momentum is achievable about certain axes.   
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hcmgmax
B

hrwmax
B = 3.266hmax

2.309hmax
= 1.414   (252) 

The concept of placing a momentum sphere directly inside the minimum radius of 

this shape does not make sense because the shape is concave. This leads the discussion to 

CMG singularities.  

F. CMG SINGULARITIES 

Within a singular gimbal angle configuration, it is not possible to produce a 

torque in certain directions. Therefore, the required torque may or may not be produced. 

Singular states occur when the rank of BZ2
G  is not full (less than n CMGs). This condition 

can occur because BZ2
G  is state dependent.   

 BZ2
Gi (δ i ) =

B
−sα icδ i − cα icβsδ i

cα icδ i − sα icβsδ i

sβsδ i

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Gi

  (253) 

If a configuration of delta leads two CMGs to yield the same columns within their 

respective Z matrix, then a singular state occurs. The entire array for the [0,90,180,270] 

arrangement is shown in Equation (254). 

 BZ2
G =

B

−cβsδ1
cδ1
sβsδ1

−cδ 2
−cβsδ 2
sβsδ 2

cβsδ 3
−cδ 3
sβsδ 3

−cδ 4
cβsδ 4
sβsδ 4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

G

  (254) 

For example, when δ1 = 0°  and δ 3 = 180° , two columns are the same. Therefore, 

rank BZ2
G( ) = 2 , which is not full. Therefore, a singular condition results during the 

pseudo-inverse. 

 BZ2
G (0°,δ 2,180°,δ 4 ) =

B

0
1
0

−cδ 2
−cβsδ 2
sβsδ 2

0
1
0

−cδ 4
cβsδ 4
sβsδ 4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

G

  (255) 
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This is just one of many different configurations can reduce the rank and cause a 

singular condition. 

1. Solving Singularity Conditions 

A detailed procedure and set of equations for determining the singularity 

conditions and associated singular momentum vectors is given in [6, pp. 676–678]. CMG 

singularity occurs when the magnitude of the dot product of the wheel momentum vector 

and the spacecraft rotation axis is one: 
 ĝi1 i ĥcmgA

B = ĥi
B i ĥcmgA

B = ±1 . In this thesis, only the 

results of the four CMG case will be analyzed. The singularity condition for each CMG 

can be written as 

 
 
hi
B = ±

ĝi3 × ĥcmgA
B( )× ĝi3

ĥi
B i ĥcmgA

B = ±
ĝi3 × ĥcmgA

B( )× ĝi3
ĝi3 × ĥcmgA

B =
ĝi3 × ĥcmgA

B( )× ĝi3
ei

 . (256) 

The vectors ei  contain the cross product of the individual CMG gimbal vectors 

and the total body momentum unit vector ĥcmgA
B . Both positive and negative variations are 

accounted for within Equation (257) by the sign function of Equation (258). 

 

e1 = ± 1− sβ ĥcmgAx
B + cβ ĥcmgAz

B( )2

e2 = ± 1− sβ ĥcmgAy
B + cβ ĥcmgAz

B( )2

e3 = ± 1− −sβ ĥcmgAx
B + cβ ĥcmgAz

B( )2

e4 = ± 1− −sβ ĥcmgAy
B + cβ ĥcmgAz

B( )2

  (257) 

  i = sign(ei ) = ±1   (258) 

The total CMG array momentum in the body frame is created using Equation 

(259).  

 hcmgA
B = hi

B

n=1

n

∑ =
ĝi3 × ĥcmgA

B( )× ĝi3
ein=1

n

∑   (259) 
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Individually accounting for each body axis separately, Equation (259) can be 

written as Equation (260).   

 

hx
B =

cβ cβ ĥcmgAx
B − sβ ĥcmgAz

B( )
e1

+
ĥcmgAx
B

e2
+
cβ cβ ĥcmgAx

B − sβ ĥcmgAz
B( )

e3
+
ĥcmgAx
B

e4

hy
B =
ĥcmgAy
B

e1
+
cβ sβ ĥcmgAz

B − cβ ĥcmgAy
B( )

e2
+
ĥcmgAy
B

e3
+
cβ sβ ĥcmgAz

B + cβ ĥcmgAy
B( )

e4

hz
B =

sβ sβ ĥcmgAz
B − cβ ĥcmgAx

B( )
e1

+
sβ sβ ĥcmgAz

B − cβ ĥcmgAy
B( )

e2

+
sβ sβ ĥcmgAz

B + cβ ĥcmgAx
B( )

e3
+
sβ sβ ĥcmgAz

B + cβ ĥcmgAy
B( )

e4

  (260) 

Given four CMGs, there are 16 (2n ) combinations of  i  that produce different 

singular conditions. When  i  has the same sign for all CMGs 
 
 = ± 1 1 1 1⎡⎣ ⎤⎦

T( ) , 

the outer singularity surface shown in Figure 64 is produced. Other combinations result in 

interior singularities: states that are contained within the volume of the CMG momentum 

envelope. 

Interior singularities mean that at some non-maximum momentum (within the set 

defined by the geometry of Figure 64), the required torque magnitude or direction cannot 

be created exactly, creating an off-eigenaxis rotation. Two types of internal singularities 

exist: hyperbolic and elliptic singularities. The names derive from the shape of the gimbal 

angle motion in the neighborhood of a singular point. These are discussed in detail within 

[3, pp. 23–30]. 

2. Hyperbolic Singularities 

Hyperbolic singularities are the milder of the two internal singularities, 

considered passible in [3, pp. 23–30]. This is the case when the CMG array cannot 

exactly produce the required torque. A specific gimbal signal can be added to the steering 

logic whenever a singular state is detected. This null motion produces no net torque on 

the system, but assists in passing through hyperbolic singularities. They occur when 



 127 

exactly two of the  i  have mismatched signs. The six combinations are shown in the 

following three cases. 

 

 

i = ±

1
1

−1
−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, 

 

i = ±

1
−1
1

−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, 

 

i = ±

1
−1
−1
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (261) 

The hyperbolic singularities make up the very center of the shape, extending from 

the origin (zero momentum) to a maximum momentum magnitude of 1.897 at its largest. 

A graphical depiction of case 2 
 
 = ± 1 −1 1 −1⎡⎣ ⎤⎦

T( )  is shown in Figure 65. It is 

noteworthy that it is symmetric about all three body axes. 

 
Figure 65.  Hyperbolic Singularity Surface for εi=±[1 -1  1 -1]T 
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Figure 66 demonstrates all three cases plotted together. Each of the cases 

extended from the origin to 1.897hmax .  

 
Figure 66.  Hyperbolic Singularities 

3. Elliptic Singularities 

Elliptic Singularities occur when the torques allowable by the physical layout of 

the CMGs are perpendicular to the required torque [11, p. 179]. They are impassible [3].   

Elliptic singularities occur when only one  i  sign is mismatched. The eight possible 

combinations are shown. 
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i = ±

−1
1
1
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, 

 

i = ±

1
−1
1
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, 

 

i = ±

1
1

−1
1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, 

 

i = ±

1
1
1

−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (262) 

The elliptic singularities extend across the width of the shape, extending from a 

minimum of 1.0069 to a maximum of 2.998hmax  at its largest. A graphical depiction of 

case 1 
 
 = ± −1 1 1 1⎡⎣ ⎤⎦

T( )  is shown in Figure 67. It is noteworthy that the singular 

surface is oriented at the skew angle β = 54.73°( ) due to the alignment of the CMG. 

 
Figure 67.  Elliptic Singularity Surface (case 1) 

Given all cases at once, independent plots extend across the momentum space, 

shown in Figure 68.  
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Figure 68.  Elliptic Singularities 

Most interestingly, the eight interior horns shown in Figure 68 align with the eight 

hollow circles shown in the perimeter volume in Figure 64. This union is shown in Figure 

69.   
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Figure 69.  Elliptic and Surface Singularities 

G. CMG LARGEST INSCRIBED SPHERE 

This thesis will not focus on complicated CMG singularity avoidance algorithms, 

an ongoing and developing research area in its own regard. In CMG systems, it may be 

easiest to treat these singularities simply as impassible in order to avoid exotic 

controllers. To create a volume that is guaranteed reachable, the minimum momentum 

magnitude of the elliptic singularity region must be completely avoided. Since this 

minimum occurs at the calculated values of 1.0069hmax (1.0hmax  in [3]), this also creates 

the largest sphere of guaranteed momentum capability. Superimposing a sphere into the 

elliptic region creates the space of guaranteed mobility, shown in Figure 72.  
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Figure 70.  CMG Largest Sphere 

This reveals that the maximum guaranteed momentum capacity is 1.0069hmax , 

69% smaller than originally estimated in Equation (252).   

 
hcmgmax
B

hrwmax
B = 1.0069hmax

3.266hmax
= 0.3083   (263) 

This means the available momentum in the CMG case is actually less than that of 

the reaction wheel cases: recall 1.633 hmax  for the full reaction wheel and 1.333hmax  for 

the pseudo-inverse limited reaction wheel. 

H. SUMMARY 

This chapter was used to develop the CMG equations of motion from the first 

principle of conservation of angular momentum. The additional moving frame causes 

CMG dynamics to be much more complex than reaction wheel dynamics. The orientation 

matrix was shown to be state-dependent, which leads to singularities. Certain CMG 

arrangements lead to different types of singularities that can cause controller failure. 

Elliptic singularities are non-passable and hyperbolic singularities are passable.   
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The singularities were individually mapped in three-dimensional momentum 

space to demonstrate where they occur. The momentum envelope was combined with 

both of the interior hyperbolic and elliptic singularities to demonstrate their intersection. 

Using the simplification that elliptic singularities must be avoided and hyperbolic 

singularities are passable, a sphere of accessible momentum was identified. The radius of 

this sphere guarantees the momentum of 1.0069hmax  about any axis of rotation. 

Therefore, this momentum value can be used to maneuver the CMG about any eigenaxis.   

Despite the lost momentum capacity and required complex ACS architecture, 

torque amplification remains the primary driver for CMG desirability over reaction 

wheels. For CMGs, a small gimbal input results in a large torque output. This relationship 

is quantified in Chapter VII.   
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VII. REACTION WHEEL AND CMG COMPARISON 

The previous chapters were used to develop the necessary background and 

equations of motion to support a detailed discussion within this chapter. This chapter is 

used to help bridge the performance gap between reaction wheels and CMGs. Instead of 

insisting that CMGs must be used for highly agile spacecraft, this chapter will introduce 

some concepts for sizing reaction wheels to attain the required slew performance. In 

some cases CMGs will be more desirable, but this chapter will illustrate that for some 

satellite systems, reaction wheels can potentially outperform CMGs. 

A. MOMENTUM SPACE AS A VISUALIZATION TOOL 

In Chapter IV, the reaction wheel momentum space was discussed. Due to the use 

of the pseudo-inverse for control allocation, the entire momentum and torque space was 

not available for control. Also, there is no real reason to stay on the eigenaxis, despite the 

fact the eigenaxis maneuvers have been historically implemented on spacecraft. The input 

can be shaped in quaternion space to move around the momentum space, searching for 

the axes of maximum momentum and torque (vertices from Chapter IV). This allows the 

slew time to be reduced and/or optimized, regardless of the slew distance and path 

traveled. Recall from Chapter V that for a successful maneuver, it is the boundary 

conditions that must be satisfied, not the path itself. 

Consider a 120° eigenaxis slew about e = 2 / 3 0 2 / 3⎡
⎣

⎤
⎦
T

. The same 

spacecraft/reaction wheel configuration from Chapter V, Sections F-G will be used.  

A trapezoidal input is fed into the system, accounting for the limitations of the pseudo-

inverse. The dynamic response of the reaction wheel array is used to build Figures 71–72. 

The vectors in the body frame are normalized against the individual wheel maximum. 

 
hnorm
B = hB / hmax

τ norm
B = τ B /τmax

  (264)  

For a reaction wheel system, the shapes of the momentum and torque envelopes 

are exactly the same. Thus, normalization via (264) allows both momentum and torque 



 136 

signals to be compared on the same scale. Figure 73 shows the scaled system response to 

the shaped input. Only the relative magnitude is shown with no regard for direction. The 

system follows the signal exactly: bang-coast-bang. The only deviation is a discontinuity 

at Point 5. This occurred because the shaped trajectory implemented cut the velocity off 

when the angle reached 0.999 of the final angle, causing a split second of unpredictable 

acceleration, and is an artifact of the simulated model only.   

 
Figure 71.  Normalized Momentum and Torque for a Trapezoidal Response 

The same maneuver is next mapped onto the momentum and torque space in Figure 

72. Since the maneuver is an eigenaxis maneuver, the momentum travels from zero to 

maximum momentum within the envelope defined by the pseudo-inverse control 

allocation, yet the axis of rotation remains fixed. The numbered points reflect those from 

Figure 71. On the right is the torque mapping. The locations of Points 1,2 are maximum 

torque in the direction of the eigenaxis. Point 5 demonstrates a strong torque reversal to 

decelerate the system.   
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Figure 72.  Momentum/Torque Space During Eigenaxis Slew 

The results shown in Figure 72 are uninteresting, and it is not surprising that this 

envelope mapping is not used to help visualize conventional reorientations. The same 

maneuver will now be illustrated using the optimal control approach described in Chapter 

V, Figures 51–53. 
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Figure 73.  Normalized Momentum and Torque for an Optimal Maneuver 

Now the temporal element of the identified points becomes important. The following 

is a description of the instantaneous rotation axis as it pertains to Points 1–5 given in 

Figures 73 and 74. 

Point 1. The array pulled far off eigenaxis at the point of maximum torque, a maximum 
vertex at 2.309τmax . This allowed the system to gain momentum as quickly as 
possible.   

Point 2. The array quickly moved along the edge of the torque space to a minor vertex at 
2.000τmax . 

Point 3. The array rapidly changed directions again, this time to another maximum vertex 
at 2.309τmax . Next, the torque decelerated the system as it pulled the rotation 
angle close to the eigenaxis.    

Point 4. The rotation angle wobbled around the eigenaxis, forming a lasso-like loop near 
maximum momentum. The torque remained close to zero, making a few 
adjustments necessary to keep the orientation direction on track. 

Point 5. Point 1 is reversed to decelerate the array. 
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Figure 74.  Momentum/Torque Space During Optimal Maneuver 

The type of action shown in Figure 74 is common for most optimal maneuvers. The 

activity appears unintuitive, but trends develop. Torque seeks high ground to raise the 

momentum quickly. Torque and momentum follow the edges and vertices as they move 

around. Rarely does the maneuver stay very close to the actual eigenaxis. Figures 75 and 

76 represent two more maneuvers to further illustrate some of the interesting behavior, 

obtained as a result of optimizing the slews. The same momentum limits are used, but the 

torque is doubled to 0.2 Nm to illustrate different maneuvers. 

The optimal use of the full momentum and torque envelopes is extremely interesting. 

The momentum and torque move like water encased in a polyhedron, flowing to high 

surfaces. The system always seems to tend towards maximum torque in a particular 

direction to maximize the momentum in order to rapidly maneuver the spacecraft. 
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Figure 75.  Optimal Slew Example 2, q0=[0.36 0 0.79 0.5], qf=[0 0 0 1] 

 
Figure 76.  Optimal Slew Example 3, q0=[0.23 0.17 0.82 0.5], qf=[0 0 0 1] 
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B. MOMENTUM AND TORQUE RELATIONSHIP 

Many variables go into determining the torque output of reaction wheel and CMG 

systems. This section uses market data to develop a “rule of thumb” relationship that can 

be utilized in size comparisons between the two very different systems.  

1. Simplified Dynamics 

In order to size a MED array, a reasonable approach would be to use the largest 

inertia. In the same way that the minimum momentum limits angular rate, the largest 

inertia limits rate. A starting point for sizing wheels might begin without the 

complications of gyroscopic coupling per Equation (265). 

 
 

hmedA
N ≈ Js/c

Nω B

τ medA
N ≈ Js/c

N ω B
 (265) 

In Chapter III, it was shown that the spacecraft can be modeled as a simple double 

integrator. This creates a linear relationship between spacecraft rate/acceleration and 

momentum/torque, as both use the same proportionality factor J. This allows a very basic 

relationship between the dynamics of the spacecraft and the momentum exchange device 

to be considered. As the engineer narrows down selection within a few reaction wheels, 

subsequent iterations should include gyroscopic coupling in the sizing analysis. 

2. Market Research and Simplified Momentum and Torque Equations 

Market data may be used to develop a relationship between momentum and 

torque for reaction wheel and CMG systems. Appendix B consists of a table of 

performance data collected from company specifications sheets and published papers 

across the Internet. Reaction wheels are more common and over fifty data points were 

readily available. CMGs are far less prevalent as less than twenty systems could be 

identified. Figure 77 offers a glimpse at this momentum and torque comparison for 

reaction wheels and CMGs. Reference [4, Figure 4] offers a similar chart and the six 

CMG data points presented in this paper are overlaid on the chart for comparison with the 

information presented in this thesis. The market data from Appendix B are marked with 
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“X’s.”  The CMG data from [4] are marked with circles. Common points contain both 

marks, but are counted only once to facilitate curve-fitting of the data.  

 
Figure 77.  Market Research Torque vs. Angular Momentum for Reaction Wheel and 

CMG Systems 

The data in Figure 77 is curve fit to obtain the trend for each type of system. A 

few things become clear. First, there is a near proportional balance between CMG 

momentum and torque, Equation (266). This is because the individual CMG torque is 

determined by the product of gimbal rate (commonly 1 rad/s [27, p. 8]) and momentum. 

On the other hand, reaction wheels seem to have an approximately square root 

relationship between momentum and torque with a proportionality constant of less than 

three percent, Equation (267). The market data confirms that reaction wheels have far 

less torque capability than CMGs. 

 CMG: τ cmg
W ≈ hcmg

W   since  
δ ≈1rad / s   (266) 
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 Reaction Wheel: τ rw
W ≈ 0.027 hrw

W   (267) 

where torque units are N-m and momentum units are N-m-s. 

Figure 77 is created on a per-wheel/CMG basis. This means that MED arrays are 

not accounted for, so array calculations using orientation matrices are still necessary. 

Another notable figure is the large torque difference at high momentum levels. This 

reveals why so many CMGs are being developed in the 100+ Nms range. On the other 

hand, micro-CMGs are rare, seemingly for good reason. With the shape of the curves, 

there actually may be a torque advantage for reaction wheels around the 0.001 Nms 

momentum level. Regardless, these curves offer a basis for comparison. Therefore, given 

momentum storage of a reaction wheel or CMG, the torque available will be described as 

CMG:  τ cmg
G = 1.0967 hcmg

G( )1.0019  (268) 

Reaction Wheel:  τ rw
W = 0.0270 hrw

W( )0.5351 .  (269) 

C. COMPARISON DEVELOPMENT 

For comparison purposes, a propagation of effective eigenaxis trajectories for the 

optimal models will be completed, similar to Figures 51 to 53 from Chapter V. The 

optimal maneuvers will be propagated in a bang-bang or bang-coast-bang trajectory 

about its effective eigenaxis (Chapter V, Section H). Already derived previously in this 

thesis, the following spherically-available momenta will be used. 

 

hrwA
B = 1.333hrwmax

W

hrw−pseoptA
B = 1.577hrwmax

W

hrw−optA
B = 1.805hrwmax

W

hcmgA
B = 1.007hrwmax

G

  (270) 

The torque equations within Equations (268) and (269) will be used to compute 

reaction wheel and CMG output torques. Transformation of torque available to the body 

frame, given a 4 reaction wheel or 4 CMG array, is computed as follows. 
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τ rwA
B = 1.333τ rwmax

W

τ rw−pseoptA
B = 1.333τ rwmax

W

τ rw−optA
B = 1.333τ rwmax

W

τ cmgA
B = 1.007τ rwmax

G

  (271) 

For 1 Nms wheels, the data in Table 3 can be determined using Equations (270) 

and (271). 

 
Table 3.   Body Momentum/Torque Comparison Table – 1 Nms Momentum 

Now a spacecraft size class must be established. Since the MED momentum 

storage is the starting point, either the spacecraft size or desired slew rate must be chosen. 

Spacecraft rate will be chosen next, because we are focusing on agile spacecraft. In the 

space industry, a 2–3°/s slew is considered agile, even for CMGs. For example, 

Worldview 1 slews at 2.3°/s [2]. Therefore, a rate of Nω B = 3° / s  will be the benchmark 

with which the spacecraft sizing will be determined. The base reaction wheel will be used 

for sizing, and all other systems will be required to slew the same spacecraft. 

 
hrwA
B = hreq

B = js/c
Nω rwA

B

∴ js/c =
hrwA
B

Nω B = 1.333Nms
3° / s

= 25.5 kg ⋅m2
  (272) 

Using these properties, the individual spacecraft rates for the various systems can 

be solved for. 

hmax%(Nms) τmax%(Nm) hmax%(Nms) τmax%(Nm)
RW 1 0.027 1.333 0.036
RWpseudo2opt 1 0.027 1.577 0.036
RWopt 1 0.027 1.807 0.036
CMG 1 1.097 1.007 1.104

Wheel/Gimbal%Frame Body%Frame
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Nω rw−pseoptA
B =

hrw−pseoptA
B

js/c
= 1.577Nms
25.5 kg ⋅m2 = 3.549° / s

Nω rw−optA
B =

hrw−optA
B

js/c
= 1.807Nms
25.5 kg ⋅m2 = 4.067° / s

Nω cmgA
B =

hcmgA
B

js/c
= 1.007Nms
25.5 kg ⋅m2 = 2.266° / s

  (273) 

Likewise, the spacecraft accelerations can also be solved for. 

 

Nα rwA
B = τ rwA

B

js/c
= 0.036Nm
25.5 kg ⋅m2 = 0.081° / s

2

Nα rw−pseoptA
B =

τ rw−pseoptA
B

js/c
= 0.036Nm
25.5 kg ⋅m2 = 0.081° / s

2

Nα rw−optA
B =

τ rw−optA
B

js/c
= 0.036Nm
25.5 kg ⋅m2 = 0.081° / s

2

Nα cmgA
B =

τ cmgA
B

js/c
= 1.104Nm
25.5 kg ⋅m2 = 2.485° / s

2

  (274) 

The data from equations (268) through (274) are compiled in Table 4. Notice the 

higher momentum capacity for reaction wheels corresponds directly to the larger 

maximum spacecraft rotation rates. Note that this rotation rate only refers to the effective 

rotation rate about the eigenaxis. The actual rotation rate of the optimal case about the 

instantaneous axis of rotation can potentially be much faster so the values in Table 4 are 

conservative estimates. The body acceleration of the reaction wheels is more than an 

order of magnitude lower than the acceleration possible using the CMGs. 

 
Table 4.   Body Rate/Acceleration Comparison for a 25.5 kg-m2 Class Spacecraft 

S/C
hmax((Nms) τmax((mNm) js/c((kg2m2) hmax((Nms) τmax((Nm)

RW 1 0.027 25.458 1.333 0.036
RWpseudo-opt 1 0.027 25.458 1.577 0.036 3.549 * 0.081 *
RWopt 1 0.027 25.458 1.807 0.036 4.067 * 0.081 *
CMG 1 1.097 25.458 1.007 1.104

Wheel/Gimbal(Frame Body(Frame
α((°/s2)ω((°/s)

*effective rotation and acceleration rates given about an effective eigenaxis.  Refer back to Section H of Chapter 6 for 
description of effective eigenaxis.  The actual body rates and acceleration can be much higher throughout the maneuver.

3.000

2.266

0.081

2.485
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Given the effective body rate and acceleration data from Table 4, the data can 

now be propagated through the “effective” or equivalent eigenaxis slews using 

trapezoidal input trajectories. This is the same as what was done for the optimal reaction 

wheel case from Chapter V. Recall the curve from Chapter V was built using a specific 

reaction wheel of 0.1 Nm torque, much higher than the one used here per the relationship 

in Equation (269). Therefore, the curves are built using different acceleration data, but the 

concept is the same.   

The plot of the eigenaxis slew angle versus slew time for all four cases is shown 

in Figure 78. This figure demonstrates the shape of the curves. Since the reaction wheel 

arrays have higher momentum storage, the time/angle slope of the momentum-limited 

region is much smaller than the one for the CMG case. This causes the reaction wheel 

systems to eventually catch up with the CMG system. The time-optimal case would not 

catch up with the CMG until the maneuver exceeds 180°, which is an unrealistic slew. 

For a 25.5 kg-m2 class spacecraft, the control system comparison shows CMGs to be 

more favorable for agile maneuvering.  

 
Figure 78.  Slew Angle vs. Time Comparison for a 25.5 kg-m2 Class Spacecraft 
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Now, suppose the wheel momentum is decreased by an order of magnitude 

( hmax = 0.1Nms ). Using the same Nω B = 3° / s  requirement, the corresponding spacecraft 

is now 2.55 kg-m2. The new comparison data is shown in Table 5.   

 

 
Table 5.   Body Rate/Acceleration Comparison for a 2.55 kg-m2 Class Spacecraft 

Notice the spacecraft rates did not change across the two models. Instead, the 

spacecraft acceleration is the important change. Due to the roughly 1:1 ratio CMG 

momentum to torque ratio (τ cmg
W ≈ hcmg

W ) from Equation (268), the CMG trajectory did not 

change very much. On the other hand, the reaction wheel has a square root relationship, 

(τ rw
W ≈ 0.027 hrw

W ) from (269). This causes the reaction wheel torque to momentum ratio 

to improve as the wheel size is decreased. The reaction wheel acceleration rates are now 

about three times higher than for the larger wheel (see Table 4). Generating the effective 

eigenaxis trajectories for each system gives Figure 79. Using these curves, it becomes 

evident that any slews greater than 77° will favor the time-optimal reaction wheel control 

system over the CMG.   

S/C
hmax((Nms) τmax((Nm) js/c((kg2m2) hmax((Nms) τmax((Nm)

RW 0.1 0.008 2.546 0.133 0.010
RWpseudo-opt 0.1 0.008 2.546 0.158 0.010 3.549 * 0.236 *
RWopt 0.1 0.008 2.546 0.181 0.010 4.067 * 0.236 *
CMG 0.1 0.109 2.546 0.101 0.110 2.266 2.474
*effective rotation and acceleration rates given about an effective eigenaxis.  Refer back to Section H of Chapter 6 for 
description of effective eigenaxis.  The actual body rates and acceleration can be much higher throughout the maneuver.

Wheel/Gimbal(Frame Body(Frame
ω((°/s) α((°/s2)
3.000 0.236
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Figure 79.  Slew Angle vs. Time Comparison for a 2.55 kg-m2 Class Spacecraft 

Notice the significant change in the reaction wheel curves. The spacecraft rates 

did not change across the two models, but the improved/larger spacecraft acceleration 

obtained from the reaction wheel system increased by about a factor of three. Because the 

angular rates are the same as before, the time/angle slope of the momentum-limited 

region did not change at all. Due to the higher available torque, the momentum-limited 

region starts at a lower angle for the reaction wheels. This causes an earlier intersection 

with the CMG curve. To better illustrate these transition points, the reaction wheel curves 

are looked at as a function of angle, after which the performance of the reaction wheel 

assembly exceeds that of the CMG assembly. This threshold will be referred to for the 

remainder of the thesis as the reaction wheel advantage angle, shown in Figure 80.   
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Figure 80.  Maneuver Angles where Reaction Wheel Systems Outperform CMGs for a 

2.55 kg-m2 Class Spacecraft 

 The trend of rapidly increasing reaction wheel performance is continued when 

wheel momentum is decreased by another order of magnitude ( hmax = 0.01Nms ).  

Using the same Nω B = 3° / s  requirement, the corresponding spacecraft size is now  

0.255 kg-m2.   The comparison is shown in Table 6 and Figures 83–84, illustrating that 

the reaction wheel advantage angles decrease as body accelerations provided by the 

wheels increase. 

 

 
Table 6.   Body Rate/Acceleration Comparison for a 0.255 kg-m2 Class Spacecraft 

S/C
hmax((Nms) τmax((mNm) js/c((kg2m2) hmax((Nms) τmax((Nm)

RW 0.01 0.002 0.255 0.013 0.003
RWpseudo-opt 0.01 0.002 0.255 0.016 0.003 3.549 * 0.689 *
RWopt 0.01 0.002 0.255 0.018 0.003 4.067 * 0.689 *
CMG 0.01 0.011 0.255 0.010 0.011 2.266 2.464
*effective rotation and acceleration rates given about an effective eigenaxis.  Refer back to Section H of Chapter 6 for 
description of effective eigenaxis.  The actual body rates and acceleration can be much higher throughout the maneuver.

Wheel/Gimbal(Frame Body(Frame
ω((°/s) α((°/s2)
3.000 0.689
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Figure 81.  Slew Angle vs. Time Comparison for a 0.255 kg-m2 Class Spacecraft 

 
Figure 82.  Maneuver Angles where Reaction Wheel Systems Outperform CMGs for a 

0.255 kg-m2 Class Spacecraft 

Referring to Figures 78, 79, and 81, it is apparent that when using like-sized 

reaction wheels and CMGs, the larger momentum capacity of reaction wheels is much 



 151 

more advantageous for small spacecraft than for larger spacecraft. In the case shown in 

Figure 83, the optimal reaction wheel control system becomes more agile than the CMG 

control system for all maneuvers greater than 24.1°. Standard operation of the reaction 

wheel array does not begin to outperform CMGs until the maneuver size exceeds 30.3°. 

If only the reaction wheel advantage angle is plotted against the wheel momenta, the 

curves in Figure 83 are obtained. The curves reveal that reaction wheels overcome CMGs 

at relatively small angles for small rotor momenta. As the spacecraft momentum 

increases, the reaction wheel advantage angle increases rapidly and reaction wheel 

control systems promptly lose their edge. 

 
Figure 83.  Reaction Wheel Advantage Angle vs. Wheel/Rotor Momentum: Where RWs 

Overcome CMGs (ω=3°/s) 

Likewise, if the spacecraft inertia versus slew angle is plotted (assuming ω=3°/s), 

the trend is shown again (Figure 84). For small spacecraft, reaction wheels seem to 

outperform CMGs, especially for large angle maneuvers. 
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Figure 84.  Reaction Wheel Advantage Angle vs. Spacecraft Inertia: Where RWs 

Overcome CMGs (ω=3°/s) 

Thus far, the results of this chapter show that reaction wheels outperform CMGs 

for small spacecraft. In addition, the two optimal control approaches described 

significantly outperformed the heritage eigenaxis maneuver. For small spacecraft, the 

reaction wheel advantage angle was reduced by only a few degrees by using optimal 

reaction wheel methods (Figure 85). At larger slew angles, 40–60° improvement can be 

achieved by optimal systems over the heritage eigenaxis maneuver (Figure 85). This 

means for large angle slews, the optimal reaction wheel system outperforms the CMG 

system significantly more quickly than if heritage control logic were used. 
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Figure 85.  Zoom in: Reaction Wheel Advantage Angle vs. Spacecraft Inertia: Where 

RWs Overcome CMGs (ω=3°/s) 

Figure 86 shows these reductions in reaction wheel advantage angles as a 

percentage improvement. The pseudo-inverse optimal method reduces the reaction wheel 

advantage angle by roughly 15% over the heritage eigenaxis shaped trajectory, while the 

full time-optimal solution reduces the reaction wheel advantage angle by 18% across the 

entire spacecraft inertia regime.   
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Figure 86.  Optimal Improvement over normal Reaction Wheel Systems 

D. MOMEMTUM EXCHANGE DEVICE PERFORMANCE AS A FUNCTION 
OF MASS 

In the analysis of Section C, equally sized reaction wheels and CMGs were used, 

i.e., both had the same momentum storage capacity. This does not have to be the case. 

Suppose the systems engineer gives a mass restriction for the entire MED array to the 

ADCS engineer. The ADCS engineer can quickly determine whether reaction wheels or 

CMGs would be better given this limitation. In this section, it will be shown how much 

more momentum can come of a reaction wheel array in comparison with CMGs given a 

mass constraint. Figure 87 shows the market research for individual MED mass and the 

output momentum the actuator can achieve. The data was curve fit to develop a general 

trend. 
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Figure 87.  Market Research Angular Momentum vs. Mass 

The mechanical complexity of CMGs requires additional mass and volume within 

the spacecraft. Using this knowledge and the relationships from Section C, the full array 

mass and body momentum can be created using the trend lines (Figure 88). This analysis 

shows that for the same array mass, an order of magnitude more momentum storage is 

typically available from reaction wheel arrays than from CMG arrays. This implies that if 

mass is a critical design constraint for the spacecraft, then engineers should take an even 

harder look at reaction wheels. 
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Figure 88.  Array Momentum vs. Mass 

Torque output, on the other hand, is better for large mass CMGs. Figure 89 

demonstrates the transition where a CMG array will begin to create more torque than a 

reaction wheel array. This is an important point because it helps illustrate why few CMGs 

have been developed on the small scale. From the market research shown in Figure 87, 

only one CMG was actually smaller than 0.898 kg.   
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Figure 89.  Array Torque vs. Mass 

E. SUMMARY 

In this chapter, it was shown that reaction wheels seem to perform better than 

CMGs for small spacecraft. As the spacecraft size decreases, the reaction wheel 

advantage increases. This increase can be further improved by the use of optimal control 

algorithms. 

The CMG torque advantage is evident for large moments of inertia. On the other 

hand, the torque gap lessens as the spacecraft size (therefore the MED array momentum 

capacity) decreases. Although the gap does not completely close, the ratio of CMG 

torque to reaction wheel torque decreases significantly with spacecraft size. 

Given arrangements of reaction wheels and CMGs with similar individual MED 

momentum, the reaction wheel array will have a larger momentum storage capacity. This 

causes reaction wheel systems to catch up with CMG systems over large angle slews. The 

reaction wheel advantage angle is the slew size in which a reaction wheels become a 
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better alternative than CMGs. For large spacecraft, the reaction wheel advantage angle 

angle is very high, possibly over 180 degrees.   

Time-optimal shaped maneuvers of reaction wheel systems can be used to lower 

this reaction wheel advantage angle by 13 to 21%, depending upon algorithms used and 

spacecraft size. By shaping only the quaternion and body rate trajectories, the 

mathematical limitations of the pseudo-inverse control allocation must still be ascribed 

to. This allows a reduction of the time-optimal reaction wheel advantage angle by 

approximately 15% over the advantage angle of the shaped eigenaxis maneuver. The 

addition of shaped time-optimal wheel torques reduces the advantage angle by 

approximately 18%.   

Considering the mass of the reaction wheels and CMGs, the reaction wheels 

produce a much higher momentum limit than CMGs for a given mass. Interestingly, the 

additional order of magnitude of momentum equates to additional torque in the similar-

weight MEDs. For MEDs smaller than 0.898 kg, the reaction wheel array will actually 

produce more torque than a CMG array. This means that given a small spacecraft with 

weight restrictions, reaction wheels are the better alternative for both torque and 

momentum.    
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VIII.  CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

This thesis is an attempt to bridge the gap between reaction wheels and CMGs, 

particularly for small satellites. Using the software upgrades and relative sizing concepts 

proposed, reaction wheel arrays have the ability to outperform CMGs for some classes of 

spacecraft. The relatively low cost of reaction wheels can be attractive once again. 

Reaction wheels are typically used inefficiently within the spacecraft industry. 

The standard maneuver, a shaped bang-coast-bang maneuver about the eigenaxis, should 

be reconsidered in the presence of new control algorithms. The results of this thesis show 

that the speed of this eigenaxis-restricted maneuver can be improved 18% in each of 

momentum and torque by applying the pseudo-inverse limited time-optimal shaped 

quaternion and rate trajectories. Furthermore, the speed of the standard eigenaxis 

maneuver can be improved by 36% by delivering the optimal torque inputs directly to the 

reaction wheels themselves. These two software solutions reduce the reaction wheel 

advantage angle by 15% and 18%, respectively. The CMG performance gap is closed and 

surpassed in many cases. 

Due to their high torque capacity, CMGs dominate reaction wheels for small 

angle maneuvers. This is because a spacecraft using CMGs can accelerate to maximum 

angular velocity very quickly. Although CMGs have a lot more torque potential, they are 

exceedingly momentum-limited. A spacecraft using reaction wheels, on the other hand, is 

slower to accelerate, but has a much greater maximum velocity. Considering like-sized 

wheels, i.e., the same momentum capacity, this thesis shows that reaction wheels catch up 

and surpass CMGs due to their higher rate limits, provided the maneuver is large enough. 

The ramifications are particularly large for smallsats and cubesats as they require very 

small MEDs. For small satellites, this thesis has shown that reaction wheels have the 

ability to outperform like-sized CMGs at relatively small angle maneuvers. As wheel and 

spacecraft sizes decrease proportionally, reaction wheels catch up to CMGs even more 

quickly. Optimal control further improves this performance.   
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B. FUTURE WORK 

This thesis did not include an exhaustive approach at validating the models of the 

analytical effective eigenaxis of each of the optimal control models. Only 100 random 

data points were used for a single combination of spacecraft/wheel sizing. The results of 

this work should be validated across the entire space of reaction wheel and spacecraft 

sizes. Gimbal momentum/torque and gyroscopic coupling relationships should be 

accounted for into this “rule of thumb.”  For instance, as body rate increases, the 

gyroscopic coupling increases. Most likely, the optimal maneuvers will use this as an 

advantage to widen the performance gap over standard maneuvers. 

The reaction wheel and CMG data should be analyzed further to account for 

variations in momentum size and torque output. To further understand the CMG 

momentum and torque relationship, research must be conducted to determine why a  

1:1 relationship between momentum and output torque is so commonly used. 

The different control approaches should also be explored from non-rest initial and 

final conditions. Given some calculable motion within a system, the optimal methods 

should be able to capitalize on this motion for further gains over the heritage maneuvers.   

Optimal control of the CMG should be explored. The optimal maneuver, by its 

very nature, should be able to avoid the singularities altogether. This would allow the 

unused capacity of the CMG momentum space to be accessed without complicated 

singularity-avoidance algorithms. One consideration during this expansion would be the 

confidence level in the spacecraft inertia and states. If knowledge of these uncertainties is 

poor, then the optimal control approach would still have a pseudo-inverse limited and 

singularity-ridden feedback system to deal with. Therefore, methods such as those 

described in [31] could be tried. 

Further analysis should be done on the momentum and torque envelope 

visualization method for optimal control maneuvers. Looking at these envelopes closely, 

it becomes obvious that the torque and momentum vectors tend toward the vertices and 

edges of the envelopes. If this space is studied in detail, it should be possible to predict 

the optimal slew times much more accurately. Just as the optimal eigenaxis-restricted 
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maneuver is a bang-coast-bang optimal path, certain characteristics of optimal maneuvers 

could be derived for maneuver size and eigenaxis orientation. This could allow quick on-

board processing of semi-optimal maneuvers, without actually computing the exact 

computer-intensive optimal path. A controller much like the eigenaxis quaternion 

feedback could potentially be developed to drive the system toward the appropriate 

vertices and edges of the momentum and torque envelopes. 

A comparison should be done with various reaction wheel and CMG 

arrangements. For example, if it is known that the pseudo-inverse limited time-optimal 

control logic is going to be used, then it may be possible to adjust the skew angle to 

maximize its envelope volume, thereby creating a larger momentum/torque radius (per 

Chapter V, Section G). Additionally, sizing wheels with different arrangements of wheel 

sizes could be considered. For example, a skew arrangement of five, six, or possibly ten 

smaller wheels may be more capable than four larger wheels, not to mention more 

redundancy. The shape would have more flat facets, but less loss. Like a cube and a 

regular octahedron of similar volumes, the octahedron allows a larger inscribed sphere. 

Mixed configurations of larger and smaller wheels could also be considered. Finally, 

hybrid reaction wheel and CMG configurations could be considered to maximize torque, 

yet maintain a high momentum envelope.   

Explore the impact of external disturbances on optimal maneuvers. Integrate 

gravity gradient, solar pressure, and aerodynamic torques into the optimal control 

problem. Compare with the eigenaxis maneuvers. Most likely, the optimal maneuvers 

will be able to exploit the external disturbances to widen the performance gap between 

the shaped eigenaxis trajectory and the time-optimal trajectories.   
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APPENDIX A.  OPTIMAL CONTROL PROBLEM IN DESIGNER 
UNITS 

Minimize:  ℑ x(⋅),u(⋅),t f⎡⎣ ⎤⎦ = t f   where  ℑ = ℑT *

                 ⇒    ℑ x(⋅),u(⋅), t f⎡⎣ ⎤⎦T
* = t fT

*

                 ⇒    ℑ x(⋅),u(⋅), t f⎡⎣ ⎤⎦ = t f

  (275) 

Subject to: 

 

q = 1
2
q4

Nω B − Nω B × q( )

     ⇒ q q*

T *

⎛
⎝⎜

⎞
⎠⎟
= 1

2
q4

Nω B q*ω *( )− Nω B ω *( )× q q*( )( )
     ⇒ q = 1

2
q4

Nω B − Nω B × q( ) T *ω *( )

  (276) 

 

q4 = − 1
2

Nω B( )T q

     ⇒ q4
q*

T *

⎛
⎝⎜

⎞
⎠⎟
= − 1

2
Nω B( )T q ω *q*( )

     ⇒ q4 = − 1
2

Nω B( )T q T *ω *( )

   (277) 

 

N ω B = Js/c
−1 − bZ3

wτ w
W − Nω B × Js/c

Nω B + bZ3
wJwΩ

W( )( )
     ⇒ N ω B ω *

T *

⎛
⎝⎜

⎞
⎠⎟
= Js/c

−1
− bZ3

wτ w
W τ *( )− Nω B ω *( )×

Js/c
Nω B ω *( ) + bZ3

wJwΩ
W Ω*( )( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

     ⇒ N ω B = Js/c
−1 − bZ3

wτ w
W τ *T *

ω *

⎛
⎝⎜

⎞
⎠⎟
− Nω B T *( )× Js/c

Nω B ω *( ) + bZ3
wJwΩ

W Ω*( )( )⎛
⎝⎜

⎞
⎠⎟

  (278) 

 

ΩW = Jw
−1τ w

W

     ⇒ ΩW Ω*

T *

⎛
⎝⎜

⎞
⎠⎟
= Jw

−1τ w
W τ *( )

     ⇒ ΩW = Jw
−1τ w

W τ *T *

Ω*

⎛
⎝⎜

⎞
⎠⎟

   (279) 
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q10 ,q20 ,q30 ,q40 ,
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B , Nω y0

B , Nω z0
B ,Ω10

W ,,Ωn0
W( ) = q1

0

q*
, q2

0

q*
, q3

0

q*
, q4

0

q*
,0,0,0,0,,0
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⎞
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−τmax
W ≤ τ i

W ≤ τmax
W

     ⇒−τmax
W

τ * ≤ τ i
W ≤ τmax

W

τ *

     ⇒−1≤ τ i
W ≤1

   (282) 

−Ωmax
W ≤ Ωi

W ≤ Ωmax
W

     ⇒−Ωmax
W

Ω* ≤ Ωi
W ≤ Ωmax

W

Ω*

     ⇒−1≤ Ωi
W ≤1 

   (283) 
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APPENDIX B.  MARKET RESEARCH 

A. REACTION WHEELS 

 
Table 7.   Market Research Reaction Wheels 

Manufacturer Model Mass
(kg)

Bradford Engineering W18 4.95
Bradford Engineering W18E 5.5
Bradford Engineering W18ES 5.85
Bradford Engineering W45 6.45
Bradford Engineering W45HT 6.5
Bradford Engineering W45E 6.65
Bradford Engineering W45ES 6.86
Dynacon MSCI MicroWheel 4000 5.2
Dynacon MSCI MicroWheel 1000 1.4
Dynacon MSCI MicroWheel 200 1
Honeywell HR0610 5
Honeywell HR0610 3.6
Honeywell HR12-12 6
Honeywell HR12-25 7
Honeywell HR12-50 9.5
Honeywell HR14-25 7.5
Honeywell HR14-50 8.5
Honeywell HR14-75 10.6
Honeywell HR16-50 6
Honeywell HR16-75 7
Honeywell HR16-100 9.5
L3 RWA-15 14
L3 MWA-50 10.5
Maryland Aerospace MAI-101 0.64
Maryland Aerospace MAI-201 0.73
Maryland Aerospace MAI-300 0.317
NASA GSFC SMEX RW 3.3

hmax
(N-m-s)

18
22
25
40
22
55
70
4

1.1
0.18
12
4
12
25
50
25
50
75
50
75

100
20

67.8
0.0011
0.0108
0.0076

4

τmax
(N-m)
0.248
0.248
0.248
0.248
0.403
0.248
0.248
0.05
0.03
0.03

0.055
0.055

0.1
0.15
0.2
0.1
0.15
0.2
0.1
0.15
0.2
0.68
0.07

0.000635
0.000625
0.000625

0.14

[ 32 ]
[ 32 ]
[ 32 ]
[ 32 ]
[ 32 ]
[ 32 ]
[ 32 ]
[ 33 ]
[ 34 ]
[ 35 ]
[ 36 ]
[ 36 ]
[ 37 ]
[ 37 ]
[ 37 ]
[ 37 ]
[ 37 ]
[ 37 ]
[ 37 ]
[ 37 ]
[ 37 ]
[ 38 ]
[ 39 ]
[ 40 ]
[ 41 ]
[ 42 ]
[ 43 ]

Reference
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Table 8.   Market Research Reaction Wheels (cont.) 

Manufacturer Model Mass
(kg)

Rockwell Collins RSI 01-5/15 0.6
Rockwell Collins RSI 01-5/28i 0.7
Rockwell Collins RSI 12-75/60 4.85
Rockwell Collins RSI 4-75/60 3.7
Rockwell Collins RSI 15-215/20 7.7
Rockwell Collins RSI 45-75/60 7.7
Rockwell Collins RSI 12-220/45 6
Rockwell Collins RSI 18-220/45 6.45
Rockwell Collins RSI 25-220/45 7.15
Rockwell Collins RSI 50-220/45 9.2
Rockwell Collins RSI 30-280/30 9.2
Rockwell Collins RSI 68-170/60 9.5
Rockwell Collins RSI 68-170/60 9.5
Rockwell Collins RDR 23-0 5.5
Rockwell Collins RDR 57-0 7.6
Rockwell Collins RDR 68-3 7.6
Rockwell Collins MWI 100-100/100 16.5
Rockwell Collins MWI 30-400/37 15.3
Sinclair Picosatellite RW 0.09
Sinclair Picosatellite RW 0.12
Sinclair Nanosatellite RW 0.185
Sinclair Microsatellite RW 0.225
Sinclair Microsatellite RW 0.225
Sinclair Microsatellite RW 0.97
SunSpace SunStar 1.986
Surrey Space SSTL MicroWheels 10SP-M 0.96
Surrey Space SSTL MicroWheels 100SP-O 2.6
Surrey Space SSTL Smallsat Wheels 200SP-M/O 5.2
Surrey Space SSTL Smallsat Wheels 200SP-O 5.2
Teldix 20 cm 3.4
Teldix 26 cm 6
Teldix 35 cm 8
Teldix 50 cm 12
Teldix 60 cm 37

hmax
(N-m-s)

0.04
0.12
12
4

15
45
12
18
25
50
30
68
68
23
57
68
100
30

0.007
0.01
0.03
0.06
0.06

1
0.65
0.42
1.5
12
12
6.5
20
80
300

1000

τmax
(N-m)

0.005
0.005
0.075
0.075
0.215
0.075
0.22
0.22
0.22
0.22
0.28
0.17
0.17
0.09
0.09
0.075
0.1
0.4

0.001
0.001
0.002
0.005
0.025
0.1

0.05
0.011
0.11
0.24
0.24
0.2
0.2
0.2
0.3
0.6

[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 44 ]
[ 45 ]
[ 45 ]
[ 45 ]
[ 45 ]
[ 45 ]
[ 45 ]
[ 46 ]
[ 47 ]
[ 47 ]
[ 48 ]
[ 48 ]
[
[
[
[
[

Reference

5, p. 398]
5, p. 398]
5, p. 398]
5, p. 398]
5, p. 398]
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B. CMGS 

 
Table 9.   Market Research Control Moment Gyroscopes 

Manufacturer Model Mass
(kg)

Astrium CMG 4-6S 13
Astrium CMG 15-45S 18.4
Astrium CMG 10-30 18.4
Goodrich/Ithaco Violet CMG 1.28
Honeywell M50 33.1
Honeywell M95 38.6
Honeywell M160 44
Honeywell M225 54
Honeywell M325 61.2
Honeywell M325D 61.2
Honeywell M715 89.8
Honeywell M600 81.6
Honeywell M1300 125
Honeywell M1400 132
Surrey Space SSTL BILSAT-1 CMG 2.2
Swampsat Swampsat 0.5

hmax
(N-m-s)

4
15
10

0.31
75

129
217
305
441
441
969
813
2000
2000
0.28

8.00E-04

τmax
(N-m)

δmax
(rad/s)

6 1.5
45 3
30 3

0.3100 1
75 1

129 1
217 1
305 1
441 1
441 1
969 1
813 1
2000 1
2000 1

0.0559 0.20
8.00E-04 1

[ 49 ]
[ 50 ]
[ 51 ]
[ 52 ]
[ 53 ]
[ 53 ]
[ 53 ]
[ 53 ]
[ 53 ]
[ 53 ]
[ 53 ]
[ 53 ]
[ 53 ]
[ 53 ]
[ 54 ]
[ 55 ]

Reference
."
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